
smartPip: A Smart Approach to Resolving Python Dependency
Conflict Issues

Chao Wang1, Rongxin Wu1, Haohao Song1, Jiwu Shu1, Guoqing Li2
1School of Informatics, Xiamen University, Xiamen, China
2Xiamen Meiya Pico Information Co., Ltd., Xiamen, China

wangc@stu.xmu.edu.cn,wurongxin@xmu.edu.cn
songhaohao2021@stu.xmu.edu.cn,jwshu@xmu.edu.cn,ligq@300188.cn

ABSTRACT

As one of the representative software ecosystems, PyPI, together
with the Python package management tool pip, greatly facilitates
Python developers to automatically manage the reuse of third-party
libraries, thus saving development time and cost. Despite its great
success in practice, a recent empirical study revealed the risks of
dependency conflict (DC) issues and then summarized the charac-
teristics of DC issues. However, the dependency resolving strategy,
which is the foundation of the prior study, has evolved to a new one,
namely the backtracking strategy. To understand how the evolution
of this dependency resolving strategy affects the prior findings, we
conducted an empirical study to revisit the characteristics of DC
issues under the new strategy. Our study revealed that, of the two
previously discovered DC issue manifestation patterns, one has sig-
nificantly changed (Pattern A), while the other remained the same
(Pattern B). We also observed, the resolving strategy for the DC is-
sues of Pattern A suffers from the efficiency issue, while the one for
the DC issues of Pattern B would lead to a waste of time and space.
Based on our findings, we propose a tool smartPip to overcome
the limitations of the resolving strategies. To resolve the DC issues
of Pattern A, instead of iteratively verifying each candidate depen-
dency library, we leverage a pre-built knowledge base of library
dependencies to collect version constraints for concerned libraries,
and then convert the version constraints into the SMT expressions
for solving. To resolve the DC issues of Pattern B, we improve the
existing virtual environment solution to reuse the local libraries as
far as possible. Finally, we evaluated smartPip in three benchmark
datasets of open source projects. The results showed that, smart-
Pip can outperform the existing Python package management tools
including pip with the new strategy and Conda in resolving DC
issues of Pattern A, and achieve 1.19X - 1.60X speedups over the
best baseline approach. Compared with the built-in Python virtual
environment (venv), smartPip reduced 34.55% - 80.26% of storage
space and achieved up to 2.26X - 6.53X speedups in resolving the
DC issues of Pattern B.
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1 INTRODUCTION

Modern software development typically relies on software ecosys-
tem to facilitate the third-party libraries installation [24, 27, 39].
A successful example is the Python ecosystem, PyPI [12], which
provides a central repository to store a large number of Python
third-party libraries [37]. By March 2022, it had indexed nearly 3
million release versions of libraries, each of which is described with
metadata (e.g., library name, version information, and dependency
on other libraries) [28]. To import a library hosted in PyPI, devel-
opers need to declare version constraints (i.e., the constraints that
the versions of libraries must satisfy) to restrict the set of compat-
ible library versions in configuration files, such as setup.py and
requirements.txt [22, 26, 32, 41]. Then, complying with the version
constraints, the python library installer, pip, will automatically in-
stall the imported library and other libraries that are depended on
this imported library, in a recursive manner. pip relieves developers
of the heavy burden of managing library dependencies. However,
due to the complex library dependencies, the automatic installation
process would come with the risk of Dependency Conflict (DC)
issues, when multiple version constraints declared for the same
library conflict with each other, leading to build failures.

Figure 1 shows a real-world DC issue example: issue #21 [4] from
the open source project ltiauthenticator. As shown in ltiauthenti-

cator’s configuration file, it directly depends on jupyterhub whose
version constraint is “jupyterhub >= 0.8” and oauthlib whose
version constraint is “oauthlib == 2.∗”. Note that, the default in-
stallation policy of pip is to download the latest version in PyPI
that satisfies the version constraints [8]. Thus, in Figure 1, the two
latest versions of libraries, jupyterhub-2.2.2 and oauthlib-2.1.0, will
be installed. However, for jupyterhub-2.2.2, its direct dependency
oauthlib whose version constraint is “oauthlib >= 3.0” conflicts
with the prior installed library version oauthlib-2.1, which causes
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oauthlib

ltiauthenticator
jupyterhub

oauthlib

==2.*
>=0.8

>=3.0

installed 2.2.2

installed 2.1.0

Conflict

pip (legacy resolver) install log:
ERROR: jupyterhub 2.2.2 has requirement oauthlib>=3.0, 

but you'll have oauthlib 2.1.0 which is incompatible.
pip (backtracking resolver) install log:
Collecting jupyterhub>=0.8

Downloading jupyterhub-2.2.2-py3-none-any.whl (3.7 MB)
Downloading jupyterhub-2.2.1-py3-none-any.whl (3.7 MB)
Downloading jupyterhub-2.2.0-py3-none-any.whl (3.7 MB)
Downloading jupyterhub-2.1.1-py3-none-any.whl (3.7 MB)
……
Downloading jupyterhub-0.9.6-py3-none-any.whl (3.1 MB)

Figure 1: Illustrative examples of DC issues.

a DC issue. When using pip with the version prior to 20.3, it will
report a build failure as shown in Figure 1.

To understand the characteristics of the Python DC issues, Wang
et al. [41] conducted the first empirical study on the manifestation
patterns and fixing strategies of DC issues from the Python open
source projects, and proposed a technique named WatchMan to
diagnose the DC issues. However, since pip 20.3 (released after
the publication of WatchMan), the dependency resolving strat-
egy, which is the foundation of the prior empirical study [41], has
evolved to a new one, namely the backtracking dependency re-
solving strategy [13]. For ease of the explanation, in this work, the
dependency resolving strategy used in the version prior to pip 20.3
was referred to as the legacy strategy, while the one used after pip
20.3 was referred to as the backtracking strategy. The evolution
of the dependency resolving strategy would significantly change
the manifestations of the DC issues. For the DC issue shown in Fig-
ure 1, instead of getting stuck in the situation where oauthlib-2.1.0
is incompatible with “oauthlib >= 3.0”, pip with the backtracking
strategy will continue to search other candidates and eventually
take jupyterhub-0.9.6 as the final choice. Since jupyterhub-0.9.6 has
no version constraint on oauthlib, the DC issue is solved. The afore-
mentioned case indicates that, the evolution of the dependency
resolving strategies would significantly affect the prior research
findings, as well as the necessity of the existing DC issue diagnosis
technique. Therefore, we conducted an empirical study to revisit
the characteristics of the Python DC issues.

Our empirical study is designed based on the two manifestation
patterns of Python DC issues discovered in the prior study [41]:
conflicts caused by remote dependency updates (Pattern-A) and
conflicts affected by the local environment (Pattern-B). Note that,
both DC issue patterns will lead to build failure using pip with the
legacy strategy. The root cause for the DC issues of Pattern-A is
that the updates of some remote dependency (in PyPI) change the
version constraints of the concerned libraries. The root cause for
the DC issues of Pattern-B is that the required version constraints
of a remote dependency are incompatible with the locally installed
tools or libraries. To understand the differences between the two

different dependency resolving strategies we design the following
two research questions.

• RQ1:Will the DC issues of Pattern-A manifest the same under
the two different dependency resolving strategies? Do fixing
strategies for the DC issues of Pattern-A need to be adapted
under the new dependency resolving strategy?
• RQ2: Will the DC issues of Pattern-B manifest the same under
the two different dependency resolving strategies? Do fixing
strategies for the DC issues of Pattern-B need to be adapted under
the new dependency resolving strategy?

Through investigating the research questions, we have made sev-
eral interesting findings. First, the backtracking strategy resolves
the majority of the DC issues of Pattern-A, but there is still room to
improve the efficiency of finding the satisfiable candidate versions
of the libraries of concern. Moreover, the DC issues of Pattern-A
that cannot be resolved are mainly due to the performance issue of
the backtracking strategy and the unsatisfiable version constraints.
Second, the backtracking strategy behaves the same as the legacy
one when encountering the DC issues of Pattern-B. Although creat-
ing an isolated virtual environment is a feasible fixing strategy, it
would result in a waste of time and space, since a significant num-
ber of compatible common libraries are downloaded and stored
repeatedly in different virtual environments.

To address the limitations observed in our empirical study, we
propose a technique smartPip. To improve the efficiency of the
backtracking strategy in resolving DC issues of Pattern-A, we con-
struct an offline dependency knowledge base, which persists the
direct dependencies information (including version constraints) for
all the libraries, collected and updated from the Python ecosystem.
Then, we resort to the offline dependency knowledge base to collect
the version constraints of all the required libraries, and then con-
vert the version constraints into the SMT expressions for solving.
smartPip is more efficient than pip with the backtracking strategy.
This is because, the backtracking strategy requires to download and
verify one candidate version of the concern libraries for each time,
until all the dependency libraries satisfy the version constraints,
which is highly time-consuming. Compared with that, the pre-built
dependency knowledge base facilitates us to collect the version
constraints without constantly downloading a number of candidate
libraries. smartPip is also more efficient than other Python package
management tools that encode dependency resolving as an SAT
problem, e.g., Conda. This is because, to deal with a dependency
library with n candidate versions, smartPip converts the version
constraints into the SMT expressions with the time complexity of
O(1), while Conda converts them into the SAT expressions with the
time complexity of O(n2). To resolve the DC issues of Pattern-B, in
smartPip, we design a new solution to use the virtual environment.
First, to share the libraries among all the virtual environments, we
first create a local repository that hosts all the downloaded libraries,
and then create a soft link pointing to a desired library in the corre-
sponding virtual environment. Second, to reuse the libraries in the
local repository, we design an algorithm to integrate the version
information of these local libraries into the version constraints, so
that the local libraries are given a higher priority to be selected. In
this way, smartPip can greatly reduce the time to download the
required libraries and the space to store them.
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To evaluate smartPip, we used three datasets, HG2.9K [29],
watchman DC issues dataset [9] and AAAI 2021 dataset [10]. To
evaluate the effectiveness and efficiency of resolving the DC is-
sues of Pattern-A, we compared smartPip with two representative
Python package management tools, pip with the backtracking strat-
egy and Conda. The results showed that, smartPip can resolve
all of DC issues and achieve 1.19X - 1.60X speedup over the best
baseline technique. To evaluate the effectiveness of resolving the
DC issues of Pattern-B, we used smartPip and pip with venv (a
built-in Python virtual environment) to build all the Python projects
in three datasets. The results showed that, the time speedup and
space reduction of smartPip over pip with venv are 2.26X - 6.53X
and 34.55% - 80.26% respectively.

In summary, the contributions of this paper are as follows:
• We performed an empirical study to revisit the characteristics
of the Python DC issues under the new dependency resolving
strategy. Our findings help understand the impact of the new
strategy in two DC issue patterns observed in the prior study
and their fixing strategies. We also observed some new technical
limitations of the new strategy.
• Based on the knowledge learned from our empirical study, We
proposed smartPip to overcome the limitations of the strategy
in resolving the DC issues.
• We evaluated the proposed technique smartPip using the three
benchmark datasets of the real-world Python projects. The eval-
uation results show that, smartPip can effectively resolve the
two different patterns of DC issues using less time and space.

2 PRELIMINARIES

To facilitate themanagement of library dependencies, various Python
package managers, such as pip and Conda, are proposed and de-
ployed. The existing Python package managers provide diverse
functionalities. In this section, we introduce only two of these
functionalities, i.e., dependency resolving and virtual environment
management, since they are related to DC issues.

2.1 Dependency Resolving

To use a library in the ecosystem, a Python project needs to specify
version constraints of the desired libraries. The process of figuring
out the appropriate version for each desired library that satisfies the
specified version constraints is referred to as “dependency resolv-
ing”. Based on how the version constraints are solved, we classify
the existing Python package managers into two categories.

The first category follows an iterative manner to compute a
feasible solution. Specifically, for each time, it first searches and
downloads one version of the desired library Li which satisfies the
version constraints, and then iteratively verifies whether the ver-
sion constraint on each direct dependency library of Li is satisfied.
pip, with either the legacy strategy or the backtracking strategy,
Poetry[20], and pipenv are the representative tools of this category.

The second category encodes the version constraints of the de-
sired libraries into a SAT solving problem, and then resorts to a
solver to directly compute the appropriate version of each desired
library. Essentially, this line of technique would not lead to the
build failure caused by DC issues of Pattern-A, if there is a feasible
solution to satisfy the version constraints of all the desired libraries.
A representative tool of this category is Conda [15]. However, due

to the complexity of encoding dependency resolving to the SAT
problem, Conda has suffered from the performance issue for a long
time, which has been extensively discussed in its issue reporting
system [2, 5–7, 17]. Besides, as admitted by Conda developers,
Conda is typically slower than pip in dependency resolving [2].

2.2 Virtual Environment Management

The virtual environment enables to isolate the installation of li-
braries for different projects without affecting one another. As
pointed out by a prior study [41], the DC issues of Pattern-B can be
mitigated by creating the virtual environment. Despite the numer-
ous Python package managers that provide the virtual environment
management functionality, they essentially work in a similar man-
ner. Specifically, pip venv (Python built-in virtual environment),
pipenv, and virtualenv will treat each virtual environment in-
dividually, and download and install the require libraries without
sharing and reusing the libraries from other virtual environments.

2.3 Scope Clarification

In this work, we limit the scope of our empirical study to the Python
package manager pip for the following reasons. First, pip is one
of the most popular and representative Python package managers.
It also shares the same/similar dependency resolving and virtual
environment management mechanism as most of other Python
package managers, including Poetry, pipenv, virtualenv and so
on. Thus, understanding the characteristics of DC issues with pip
is also meaningful for other Python package managers. Second, pip
manages the dependency libraries hosted in PyPI which is currently
the largest Python ecosystem, and can be used for general Python
projects. Meanwhile, some Python package managers are applicable
in some specific types of projects, since they leverage a compara-
tively small-scale ecosystem. For example, Conda maintains only
7,500+ libraries for Python [16], and typically limits the usage in
data science projects. Therefore, using pip enables us to conduct
the empirical study on general Python projects.

3 EMPIRICAL STUDY AND MOTIVATION

The characteristics of DC issues for Python projects were first em-
pirically studied by Wang et al. [41]. Their findings greatly inspired
and facilitated the future studies on Python DC issues. However,
their results were based on the dependency resolving strategy of
pip at the time of their study, which has been obsolete since pip 20.3.
Due to a generally limited understanding of how this evolution of
pip’s dependency resolving strategy affects the manifestation pat-
terns and fixing patterns of DC issues, we performed an empirical
study on the same dataset of the prior study [41] by comparing the
two different strategies.

3.1 The Design of Empirical Study

3.1.1 Design for RQ1:
To answer RQ1, we used the dataset of DC issues that are collected
or reported by WathchMan [41]. We manually checked the bug
reports of the DC issues of Pattern-A as well as the ones reported
in their subsequent submissions. Specifically, by inspecting the bug
report and the Pull Request for fixing DC issues, we identified the
version of the project before the target DC issue was fixed. Then,
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Table 1: Statistics for constructing the Pattern-B dataset.

Group # of project pairs % of DC issues of Pattern B

0 47,401 /
[1, 5] 33,639 2.10% (706/33,639)
[6, 10] 11,496 5.88% (676/11,496)
[11, 20] 4,268 9.77% (417/4,268)
[21, 50] 2,765 21.88% (605/2,765)
[51, +∞) 431 24.13% (104/431)

we tried to reproduce the DC issues using the legacy dependency
resolving strategy, and filtered out the ones which cannot be repro-
duced. These unreproducible cases are mainly due to the following
reasons: (1) the code repository of the target Python project was re-
moved; (2) the updates of some remote dependency in PyPI changed
the version constraints of the concerned libraries and fixed the DC
issues; or (3) the bug report did not contain necessary reproduction
information (e.g., the version where the DC issue occurs, commits
or pull requests for fixing DC issues). Finally, we gathered 82 DC
issues from 117 Python projects. To ease the explanation, we refer
to this dataset as “Pattern-A dataset”.
3.1.2 Design for RQ2:
For RQ2, we cannot use the DC issues of Pattern-B discovered by the
prior study [41]. This is because, the authors failed to provide the
developers’ real local environments [41], and thus these DC issues
are impossible to reproduce. Therefore, to answer RQ2, we build a
dataset of the DC issues of Pattern-B in a simulated way as follows.
(1) We randomly select a pair of Python projects hosted in PyPI, and
then compute the number of their common dependency libraries
(without considering the version). (2) For each Python projects pair,
we consider one to be the target python project to be installed, and
the other one (together with its dependency libraries) as the local
environment. We repeat the aforementioned steps 100,000 times,
and eventually obtain 2,508 pairs of Python projects that can cause
the DC issues of Pattern-B. To ease the explanation, we refer to this
dataset as “Pattern-B dataset”.

Although the Pattern-B dataset is not collected from the real-
world developers’ environments, it reflects the simplest scenario
that can induce DC issues of Pattern-B to some extent. During
constructing Pattern-B dataset, we made several interesting obser-
vations. (1) As shown in Table 1, by randomly selecting pairs of
Python projects, 52.60% (52,599/100,000) of the project pairs share
at least one common library. (2) The probability of inducing the DC
issues of Pattern-B increases with the number of common libraries
that a pair of Python projects share. As shown in Table 1, based
on the number of common libraries, we categorize each pair into
five groups: [1, 5], [6, 10], [11, 20], [21, 50], [51, +∞]. In the Group
[1,5], the probability of inducing DC issues is around 2.1%, while
this probability increases to 24.13% in the Group [51, +∞]. The
observation is not surprising, since the DC issues have originated
from the conflict about the version constraints of common libraries.

3.2 The Empirical Study Results

3.2.1 Answer to RQ1.
To answer RQ1, we apply the legacy and backtracking strategies to
the Pattern-A dataset. In the following, we discuss the manifesta-
tion patterns and fixing strategies of the issues in detail with the
illustrative examples.

Finding 1: pip with the backtracking strategy can successfully

resolve 70.73% (58 in 82) of the DC issues of Pattern-A. To complete

the installation of all the libraries, for each project, the backtracking

strategy requires to download and verify on average 20 redundant

candidate versions, leading to the efficiency issue.

In Pattern-A dataset, the backtracking strategy can solve most
of the DC issues. As shown in Figure 1, the legacy strategy will
get stuck in the installation of jupyterhub-2.2.2, since its direct de-
pendency oauthlib whose version constraint is “oauthlib >= 3.0”
in conflict with oauthlib-2.1.0 which was previously installed. As
shown in the installation log, the backtracking strategy will keep
searching all the candidate versions of jupyterhub, i.e., the ones
which satisfy the version constraints “jupyterhub >= 0.8”. When
trying jupyterhub-0.9.6, its direct dependency oauthlib has no ver-
sion constraints, and thus we can keep the previously installed
oauthlib-2.1.0. The above steps are iterative, until the version con-
straints of all the dependency libraries are satisfied. As seen from
the example, the backtracking strategy allows to iteratively down-
load some candidate versions and discards them when the corre-
sponding version constraints are later violated. This iterative search
would result in the downloading of some redundant candidates.
In the example of Figure 1, the backtracking strategy iteratively
downloaded 19 versions of jupyterhub in total, of which each is
more than 3MB. We surveyed all the projects that can be solved
by the backtracking strategy in the Pattern-A dataset, and found
that, on average, it requires to download 20 redundant candidate
libraries for each project before completing the installation of all
the required libraries.

Finding 2: When the search space of the backtracking strategy is

too large, it will terminate the search of the dependency libraries and

lead to the failure of resolving the DC issues of Pattern-A.

In terms of the cases where the backtracking strategy fails to
resolve, one of the reasons is that the search space of the backtrack-
ing is too large. For example, when using the backtracking strategy
to install the project imgsync [3], it reports an error message "This
is taking longer than usual. You might need to provide the depen-

dency resolver with stricter constraints to reduce runtime". Moreover,
The log message "pip._vendor.resolvelib.resolvers.ResolutionTooDeep:
2000000" indicates that, when the search depth is too large, to avoid
downloading too many candidates pip decides to terminate the
search. Although we only found one case of such failure in our
study, essentially, this failure can be considered to be an extreme
case of the efficiency issue pointed out by Finding 1.

Finding 3: When version constraints of all the required libraries

are unsolvable, neither the legacy strategy nor the backtracking strat-

egy can resolve such DC issues. These DC issues can be fixed by chang-

ing the version constraints of the Python project or its dependency

libraries.

In Pattern-A dataset, there are 29.27% (24 in 82) projects that
cannot be resolved by the two existing strategies of pip. Specifi-
cally, the legacy strategy will directly report an error whenever the
version constraints of a concerned libraries is violated, while the
backtracking strategy will exhaustively search all the possible can-
didate versions of the required libraries and then eventually report
the error. Figure 2 shows such an example. Client directly depends
on netlib of which the version constraint is “netlib <= 0.11.1” and
pyopenssl of which the version constraint is “pyopenssl == 0.13.1”.
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netlib

Client
pyopenssl

pyopenssl
<=

0.1
1.1

==0.13.1

>=0.14

installed 0.13.1
Conflict

netlib
installed 0.11.1

netlib
installed 0.11.0

……

pyopenssl

>=0.14

The conflict is caused by:
The user requested pyopenssl==0.13.1 netlib 0.11.1 depends on pyopenssl>=0.14
The user requested pyopenssl==0.13.1 netlib 0.11.0 depends on pyopenssl>=0.14

Figure 2: An example of unsolvable version constraints.

Table 2: The proportion of incompatible libraries.

Group DC issues
of Pattern B

# of Common
libraries (avg)

% of incompatible
in common libraries

[1, 5] 706 3.42 38.30% (1.31/3.42)
[6, 10] 676 7.21 21.50% (1.55/7.21)
[11, 20] 417 14.13 11.75% (1.66/14.13)
[21, 50] 605 26.59 10.91% (2.90/26.59)
[51, +∞) 104 59.37 4.19% (2.49/59.37)

However, all the feasible versions of netlib depend on pyopenssl and
the version constraint is “pyopenssl >= 0.14”, which is always con-
tradicted with Client’s requirements on pyopenssl and the version
constraint is “pyopenssl == 0.13.1”. Essentially, such DC issues
indicate that there is a contradiction among the version constraints
of the project and its required dependency libraries. Therefore, it
should notify the developers of the project or the dependency li-
braries to assist the fixing of such DC issues, which correspond to
the fixing strategies summarized by the prior study WatchMan
[41].

Answer to RQ1: The DC issues of Pattern-A that manifest as the
build failures under the legacy strategy have been mostly resolved
by the backtracking strategy. Meanwhile, a minority of DC issues of
Pattern-A, whose version constraints of the dependency libraries are
unsolvable, cannot be resolved by the backtracking strategy. Instead,
solving these DC issues requires adjustment to the declaration of
version constraints among the Python project and its dependency
libraries, as suggested by the prior study [41].

3.2.2 Answer to RQ2.
To answer RQ2, we applied both the backtracking strategy and the
legacy strategy to the Pattern-B dataset.

Finding 4: Both the backtracking strategy and the legacy strategy

behave the same for the DC issues of the Pattern-B, and will uninstall

the libraries of the local environment which are incompatible with

the version constraints of the ongoing installed libraries.

Figure 3(a) shows an example of DC issues of the Pattern-B.
The local environment includes tsktsk-0.3.1 and its dependency
libraries pyyaml-5.3.1 and requests-2.24.0. When installing yamlflow-

0.0.9, the version constraint of its dependency library pyyaml is
“pyyaml >= 5.4.1 ∧ pyyaml < 6.0.0”, which is conflicted with the
local library pyyaml-5.3.1. In this case, both of the strategies will
uninstall the local one, and install the latest version with respect to

tsktsk-0.3.1

requests

pyyaml
==2.24.0

==
5.3
.1

installed : pyyaml==5.3.1

Local Environment

>=5.0.0,<6.0.0

>=
5.4
.1,<
6.0
.0

installed : pyyaml==5.4.1

yamlflow-0.0.9

pyyaml

docker requests

>=2.14.2,!=2.18.0

Ongoing Install Package

Conflict

Uninstalling PyYAML-5.3.1:
Successfully uninstalled PyYAML-5.3.1

tsktsk 0.3.1 requires pyyaml==5.3.1, but you have pyyaml 5.4.1 which is incompatible.

(a) Installing yamlflow-0.0.9 in the local environment.

tsktsk-0.3.1

requests

pyyaml
==2.24.0

==
5.3
.1

installed : requests==2.24.0

Virtual Environment - 1

>=5.0.0,<6.0.0

>=
5.4
.1,<
6.0
.0

installed : pyyaml==5.4.1

yamlflow-0.0.9

pyyaml

docker requests
>=2.14.2,!=2.18.0

Virtual Environment - 2

installed : pyyaml==5.3.1

Compatible

(b) Create virtual environments for tsktsk-0.3.1 and yamlflow-0.0.9.

Figure 3: An example of DC issues of Pattern-B and its fixing

strategy.

the constraint “pyyaml >= 5.4.1 ∧ pyyaml < 6.0.0”, i.e., pyyaml-

5.4.1. However, this replacement version of pyyaml may lead to the
runtime error when running the local project tsktsk-0.3.1 in future.

As discussed in a prior study [41], creating the virtual environ-
ment for each project is a feasible fixing strategy for resolving the
DC issues of Pattern-B. Therefore, in this study, we use the Python
built-in virtual environment, i.e., venv, to isolate the installation
of each project in the pairs. Our study confirms the feasibility of
this solution under both the backtracking strategy and the legacy
strategy. Meanwhile, we also made some interesting observations
on the limitations of using the Python built-in virtual environment.

Finding 5: Using Python’s built-in virtual environment to isolate

the installation of each project resolves the DC issues of Pattern-B.

However, due to this isolation, it loses the chance to reuse and share the

compatible common libraries between different virtual environments.

Creating an isolating virtual environment to install projects
brings the additional time and space cost. Figure 3(b) shows an
example of creating virtual environments for two Python projects
tsktsk-0.3.1 and yamlflow-0.0.9, respectively. This resolves the DC
issue shown in Figure 3(a). As we can see, both projects require
the dependency library requests, and the version constraints are
“requests == 2.24.0” and “requests >= 2.14.2∧requests! = 2.18.0”
respectively, which are compatible with each other. Thus, it is feasi-
ble to share the common library requests-2.24.0 for the two projects.
However, due to the isolated virtual environment, it needs to down-
load requests−2.24.0 and requests-2.27.1, respectively, resulting in
additional time and space cost.
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Figure 4: Architecture of smartPip.

To further understand the potential of reusing the compatible
common libraries, we investigated the logs of installing each pair of
the project of the Pattern-B dataset in the same local environment.
Note that, if the version constraints of a common library are in-
compatible between two projects, pip will uninstall the previously
installed version of this library. We analyzed the logs about such
uninstallation, and computed the number of incompatible common
libraries for each project pair. Table 2 shows the statistical results
for the proportion of the incompatible common libraries between
the project pairs in the Pattern-B dataset. The incompatible common
libraries take a small proportion of the overall common libraries,
ranging from 4.19% to 38.30%, and decrease with the increasing
number of the common libraries. This indicates that, for 61.70% to
95.81% of common libraries, which are compatible ones in the in-
stallation of project pairs, are not reused and shared when creating
the isolated virtual environments, leading to additional time and
space cost.

Answer to RQ2: Both the backtracking strategy and the legacy
strategy behave the same when resolving the DC issues of Pattern-B.
Creating a virtual environment to isolate the installation of Python
projects is a feasible fixing strategy. However, using the Python
built-in virtual environment leads to a waste of time and space,
since compatible common libraries are not shared or reused.

4 APPROACH

4.1 Overview

In this section, we described the smartPip approach, which aims
to solve the DC issues in Python projects. The overall structure
of smartPip is shown in Figure 4. smartPip mainly includes an
offline process and an online process. The offline process constructs
the local dependency knowledge base for all the libraries hosted in

charset_normalizer~=2.0.0

idna>=2.5,<4

urllib3>=1.21.1,<1.27

certifi>=2017.4.17

(a) An example of requirement.txt.

setuptools.setup(
name=”Lib-A",
version="0.0.1",
long_description=long_description,
package_dir={"": "src"},
install_requires=['requests>=2.20.0'],
……

)

(b) An example of setup.py.

Figure 5: Examples of Python configuration files.

PyPI (See Section 4.2). The online process generates the installation
script for a given Python project based on its configuration file (See
Section 4.3), and finally manages the installation of all the required
libraries (See Section 4.4).

4.2 Dependency Knowledge Base Building

As shown in the empirical study, pip with the backtracking strat-
egy is required to iteratively download one candidate version of
a concerned library to obtain the version constraints of its direct
dependency libraries. As we can expect, it would be inefficient
when the number and the size of iterative downloaded libraries
are large. To overcome this limitation, we propose building a local
dependency knowledge base to store the version constraints of all
the dependency libraries hosted in the PyPI, so that the version con-
straints can be collected without downloading the corresponding
libraries.
4.2.1 Collection of Library Dependency Data.
PyPI is a central repository for third-party libraries in Python lan-
guage, which is used in most of the Python project development.
Therefore, our local dependency knowledge base was constructed
by crawling from PyPI. Specifically, we developed a crawler to
download all the Python projects in PyPI and the corresponding
dependency configuration files. Due to the large number of libraries
(around 3million release versions), it took us three days to download
all of them. Since PyPI will continually update, it is also important
to keep the local knowledge base updated. However, downloading
the PyPI repository each time from scratch is impractical since it
would not be able to keep pace with the update of PyPI. To resolve
this issue, we resort to Libraries.io, a platform that can monitor the
library updates from 32 different library managers including PyPI.
Based on that, we can incrementally crawl the Python libraries
that have been updated since our last crawling, as well as their
dependency configuration files. This can greatly reduce the time
cost of maintaining the local dependency knowledge base.

4.2.2 Dependency Configuration Analysis.
After getting all the Python libraries from PyPI, we analyze each
library’s dependency configuration files to extract the version con-
straints of its dependency libraries. Typically, there are two types
of dependency configuration files: requirements.txt and setup.py.

Analyzing requirements.txt is comparatively easy, as each line
directly represents the version constraint of a direct dependency
library. Figure 5(a) shows an example, which includes the version
constraints of four dependency libraries.

Analyzing setup.py is sightly complicated. The version constraints
of the direct dependency libraries are essentially one of the param-
eters (i.e., install_requires) used in the function call to a specific API
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setuptools.setup. Figure 5(b) shows an example of setup.py. As the
value of install_requires can be defined in various ways, statically
analyzing its value would be unsound. To resolve this issue, we
instrument setup.py by inserting a function which is identical to the
API setuptools.setup and will print out the value of install_requires.
By dynamically executing this instrumented program, this inserted
function will intercept the original API setuptools.setup and print
out the value of install_requires. In this way, we can soundly obtain
the version constraints of the direct dependency libraries.

To facilitate SMT solver to understand the version constraint
of each dependency library, we convert each version constraint
(e.g., oauthlib == 2.∗) into an SMT expression using the following
steps. First, for the library that is concerned with the given version
constraint (e.g., oauthlib), we query the knowledge base to obtain
the ordered list of all of its versions in the ecosystem. Note that, for
each library, during the knowledge base building, we order all of
its versions following PEP 440 (Python Enhancement Proposal 440)
[1] which is the official Python version scheme for identifying and
ordering library versions, and then associate each version with its
index in the ordered list. Second, we follow PEP 440 to identify the
versions that satisfy the given version constraint, and then leverage
the index range of these versions to construct SMT expression. Take
“oauthlib == 2.∗” as an example. There are 48 versions of oauthlib
which have been ordered and indexed during the knowledge base
building. We identify 9 versions of oauthlib, i.e., “2.0, 2.1, ..., 2.1.0”,
which satisfy the version constraint. Since the index of these ver-
sions range from 35 to 43, we then convert “oauthlib == 2.∗” into
“35 ≤ oauthlib ≤ 43”.
4.2.3 Using Dependency Knowledge Base In the Users’ Site.
To save on users’ time cost of building and updating the knowl-
edge base, we provide users with the services of downloading and
updating the pre-built knowledge base data which is constructed
in a remote server. To compactly store the data for all the libraries
in PyPI, the data structure of the knowledge base is elaborately
designed. For example, we use a unique hash value to represent
the name of each library, and use an index value to represent each
version of a library. In our implementation, it only takes up 100 MB
to store the pre-built knowledge base. Such compact data is afford-
able for use in the users’ site. At the users’ site, a local process will
be independently started for loading the downloaded knowledge
base and fetching the updated data periodically (e.g., once a day).
In this way, we mitigate the computation cost of constructing and
updating knowledge base in users’ site.

4.3 Dependency Constraint Solving

In this section, we mainly introduce how to collect the version
constraints of all the required libraries with respect to a given
Python project. We also explain how to optimize the constraint
solving to reuse the libraries in the local repositories.

4.3.1 Construct SMT expression.
Given a new Python project to install, we can resort to the same
approach as described in Section 4.2.2 to analyze its dependency
configuration files to extract its direct dependency libraries with
their version constraints. Based on the direct dependency libraries,
we then leverage the local dependency knowledge base to collect all
the transitive dependency libraries with their version constraints.

Algorithm 1 Collect version constraint
Input: C : Project Configuration
Output: Expr : All version constraints of the required libraries
1: /∗∗L : Get all direct libraries with version constraints from configuration file.∗∗/
2: L ← getDirectLibraries(C )
3: Expr ← TRU E
4: /∗ ∗ Li : Library name.
5: VCi : Library version constraints.∗ ∗ /
6: for each tuple < Li , VCi >∈ L do

7: Si ← ∅
8: ExprLi ← libraryAnalysis(Li , VCi , Si )
9: Expr ← AND(Expr, ExprLi )
10: function libraryAnalysis(Li , VCi , S )
11: if Li not in S then

12: add Li into S
13: /∗∗ Convert version constraints to version list
14: by using dependency knowledge base.∗ ∗ /
15: V ← analysisVersionConstraint(VCi )
16: ExprV ← FALSE
17: for each version Vi ∈ V do

18: /∗ ∗ D : Get all direct libraries
19: with version consistent from library.∗ ∗ /
20: D ← getDirectLibraries(Vi )
21: ExprD ← TRU E
22: for each tuple < Di , VCDi >∈ D do

23: ExprDi ← libraryAnalysis(Di , VCDi , Si )
24: ExprD ← AND(ExprD, ExprDi )
25: /∗∗ Add expr for each version with OR .∗ ∗ /
26: ExprV ← OR(ExprV , ExprD )
27: remove Li from S
28: Return AND(ExprV , VCi )
29: /∗∗ If Li has been resolved,
30: only add its version constraint into SMT.∗ ∗ /
31: Return VCi

The pseudo-code of constructing the version constraints of the
required libraries is shown in Algorithm 1. By analyzing the depen-
dency configuration file, we obtain all the direct dependencies with
their version constraints (Line 2, Algorithm 1). The SMT expression
of the version constraints Expr is initialized with valueTRUE. Then,
we enumerate each direct dependency library Li , collect the SMT
expression ExprLi for Li and the Li ’s required dependency libraries,
and then perform the conjunction operation between ExprLi and
Expr for each time (Line 6-9, Algorithm 1). The function Library-
Analysis takes a dependency library name Li , the Li ’s version
constraintVCi , and a set of library names S as the inputs. Library-
Analysis returns the SMT expression of the version constraint
for a given library Li and Li ’s required dependency libraries. The
library name set s , which is one of the inputs of LibraryAnalysis,
is used to avoid the computation of previously collected library’s
SMT expression.
4.3.2 Constraint Solving Optimization.
After collecting SMT expressions for the version constraints for the
required libraries, smartPip resorts to Z3-solver, the most popu-
lar and open source constraint solving tool [25, 36], to solve the
constraints.

As pointed out by our empirical study (See Section 2), the Python
built-in virtual environments do not share or reuse the common
compatible versions of libraries, leading to additional time and
space cost. To achieve the reuse of the local libraries, we propose
to give a higher priority to those versions of the local libraries.
Specifically, we transform one version of the local library into an
SMT expression each time, use the “AND” operation to integrate
this SMT expression into the SMT expression collected in the prior
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Algorithm 2 Optimizing version constraints
Input: Expr : SMT expression
Input: LR : all libraries in local repository
Output: L : list of library with version constraint (e.g., r equests == 2.20.0)
1: /∗∗ get all libraries name from Expr .∗ ∗ /
2: LN ← getAllLibraries(Expr )
3: for each library LNi ∈ LN do

4: if LNi in LR then

5: /∗∗ get all versions of the library
6: in the local repository.∗ ∗ /
7: V ← getAllVersion(LR, LNi )
8: for each version Vi ∈ V do

9: /∗∗ save a copy.∗ ∗ /
10: Exprcopy ← Expr
11: Expr ← AND(Expr, LNi == Vi )
12: if Expr is sat then
13: break
14: else

15: /∗∗ roll-back Expr . ∗ ∗/
16: Expr ← Exprcopy

step (Section 4.3.1), and then use Z3 to check whether they are
satisfiable. If so, we keep this version of the local library in the SMT
expression, and repeat the prior step until there no available local
libraries. If not, we discard this version of local library, and repeat
the prior step. In this way, we can optimally reuse the versions of
the local libraries.

The pseudo-code of the above constraint solving optimization
step is shown in Algorithm 2. It takes the input Expr which is
computed by Algorithm 1, and the other input LR which is the list
of the libraries downloaded in the local repository (See Section
4.4). smartPip retrieves the list of library names from Expr (Line
2, Algorithm 1), and then enumerate each of them LNi . If the local
repository contains a list of versions for LNi , it enumerates each
version Vi , and checks whether the SMT expression which inte-
grates LNi == Vi into Expr with “AND” operation is satisfiable.
If satisfiable, we will preserve the version Vi using the constraint
LNi == Vi .

Note that, the installation policy of pip is to select the latest
version that satisfies the version constraints and avoid selecting the
pre-release version [8]. To align with these preferences, for each
library, we add the constraints to exclude its pre-release versions
and instruct the SMT solver to compute the feasible solution that
favors the maximum value (indicating the latest version).

4.4 Library Installation Management

As pointed out by our empirical study, Python built-in virtual envi-
ronment creates one copy of each required library independently,
and thus loses the chances to share the libraries from other virtual
environments. To overcome this limitation, we introduce a local
repository to store the downloaded libraries required by different
virtual environments, and leverage the soft link to share them.

To resolve the DC issues of Pattern-B, smartPip also resorts to
the Python virtual environment to install the Python project. Note
that, installing different versions of a same library is not allowed in
the same Python virtual environment. Therefore, to facilitate the
store and reuse of all the downloaded Python dependency libraries
for different virtual environments, we create a local repository
which does not belong to any virtual environment. The first-layer
directory of the local repository is organized based on each library.

……
urllib3 pytest seaborn

py2.py3-none-
any

v 1.26.9
v 1.26.8

…
v 0.2

Py3-none-any

v 0.11.2
v 0.11.2rc0

…
v 0.1

py3-none-any

v 7.1.1
v 7.1.0

…
v 2.0.0

Center 
Repository

Figure 6: An example of central repository.

For different versions of the same library, smartPip creates the
second-layer directory to store each of them. Figure 6 shows an
example of our local repository. When the dependency constraint
solving process provides a compatible version of a concerned library,
e.g., urllib3-1.26.9, smartPip will first search whether a first-layer
directory urllib3 and its second-layer directory v1.26.9 exist in the
local repository. If so, smartPip creates a soft link to point to it.
If not, smartPip will create the two-layer directories based on
the predefined organization, download the given version of the
library, store the downloaded library in the created directory, and
eventually create a soft link in the virtual environment to point
to the created directory. In this way, smartPip can save the hard
disk space, since each version of one library is only downloaded
and stored once and can be accessed via soft links among different
virtual environments.

The dependency constraint solving step delivers a feasible solu-
tion for the compatible versions of the required libraries. smart-
Pip then converts this feasible solution into a dependency configu-
ration file that pip can use to install the required libraries. Figure 7
shows an example of converting a feasible solution to an installation
script. For the project Client, the solution of the compatible versions
of the required libraries is Lib-A 1.0, Lib-B 2.0, Lib-C 3.0, and Lib-D

4.0. smartPip converts these library versions into the equations
Lib-A==1.0, Lib-B==2.0, Lib-C==3.0, Lib-D==4.0 in the dependency
configuration file, i.e., “smartpip.txt”. Using the dependency config-
uration file, smartPip checks whether the required libraries have
already been in the local repository, and then generates the cor-
responding installation script which will exclude the download of
the previously downloaded libraries. In the aforementioned exam-
ple, since Lib-B 2.0 and Lib-D 4.0 have been in the local repository,
smartPip only downloads the other two required libraries in the
local repository, and creates the soft link to point to the directory
of the local repository in the virtual environment.

4.5 Technical Comparison with Conda

Conda encodes the dependency resolving as an SAT problem (See
Section 2.1), while our approach smartPip encodes it as an SMT
problem. The difference between smartPip and Conda for encod-
ing the dependency resolving problem is the key that smartPip can
mitigate the performance issue of Conda.

Let us take an illustrative example. Suppose that there is a de-
pendency library Li with the version constraint v1 ≤ Li ≤ vn , and
the ordered list of the versions that satisfy this version constraint
is v1,v2, ...,vn . Conda needs to encode each version vi with the
values 1 and 0 to indicate whethervi is selected or not. Since the se-
lection ofvi is mutually exclusivewith other versions, selectingvi is
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Lib-A

Client

Lib-B

==1.0

==2.0

Lib-C

Feasible solution : Lib-A 1.0, Lib-B 2.0, Lib-C 3.0, Lib-D 4.0

==3.0

smartpip.txt

Lib-A==1.0
Lib-B==2.0
Lib-C==3.0
Lib-D==4.0

smartPip install –r smartpip.txt

Lib-D

Lib-D

>=3.0,<=4.0

>=4.0

Lib-B==2.0 (exist)
Lib-D==4.0 (exist)

local repository

install.script

pip install Lib-A==1.0 --no-deps
pip install Lib-C==3.0 --no-deps
……
# dist : virtual environment
# source : local repository
ln -s dist source (create soft link)
……

Figure 7: Convert a feasible solution to an installation script.

encoded as an SAT expression SLi = (¬v1∧¬v2∧ ...∧vi ∧ ...∧¬vn ).
Since v1,v2, ...,vi , ...,vn are candidate versions for a feasible solu-
tion, Conda needs to encode it as SL1 ∨ SL2 ∨ ... ∨ SLi ∨ ... ∨ SLn .
smartPip can greatly simplify the problem encoding. As the in-
dex of the versions that satisfy the version constraint range from
1 to n, the version constraint is converted to an SMT expression
1 ≤ Li ≤ n. Essentially, in the above example, Conda constructs
the SAT expression with the time complexity ofO(n2), while smart-
Pip constructs the SMT expression with the time complexity ofO(1).
Due to this time complexity reduction, smartPip can be much more
efficient than Conda.

5 EVALUATION

5.1 Experimental Setup

We evaluate the effectiveness of smartPip in resolving the DC
issues of Pattern-A and Pattern-B using real-world open source
Python projects against the following two research questions.

• RQ3: Can smartPip resolve the DC issues of Pattern-A success-
fully? How much time can smartPip save, compared to pip with
the backtracking strategy and Conda?
• RQ4:When resolving the DC issues of Pattern-B, how much time
and space can smartPip save, compared to pip with the Python
built-in virtual environment?

To study RQ3 and RQ4, we select the three publicly available
datasets of real-world open source Python projects from the existing
research studies.

• WatchMan dataset [9]: This dataset contains the Python projects
whose DC issues were detected by WatchMan. This dataset was
also used in Section 3. Note that, as shown in Section 3.2.1, the
DC issues in 58 out of 82 projects are solvable, and are thus used
in the evaluation.
• HG2.9K dataset [29]: This dataset contains the Python projects
which were used to evaluate the effectiveness of the Python
dependency inference techniques [30, 31, 40]. We obtained 36
Python projects which contain DC issues.

Table 3: The Success Rate Comparison.

Dataset Conda pip - backtracking smartPip
WatchMan 6/58 (10.3%) 57/58 (98.3%) 58/58 (100%)
HG2.9K 8/36 (22.2%) 36/36 (100%) 36/36 (100%)

AI 2/26 (7.7%) 26/26 (100%) 26/26 (100%)
Sum 16/120 (13.3%) 119/120 (99.2%) 120/120 (100%)

• AAAI 2021 dataset: This dataset contains the implementations for
the research papers published in AAAI 2021, a top-tier conference
in the AI area [10]. We choose this dataset, because Python is
widely used in the AI area and Python projects released in such a
reputable AI conference should be representative and high quality.
Note that, not all the papers release their code or implement the
technique using Python. Thus, we manually inspected the papers
and their links to the implementations. Eventually, we obtained
26 Python projects which contain DC issues.
Since RQ3 aims to evaluate the performance of smartPip in

resolving the DC issues of Pattern-A, we apply smartPip , pip with
the backtracking strategy, and Conda to install the dependency
libraries for each single Python project in the three datasets. We
select pip with the backtracking strategy and Conda as the baseline
approaches, because they are the representatives of the two cate-
gories of dependency resolving techniques as discussed in Section
2.1. We do not include pip with the legacy strategy in the evaluation,
since it will directly lead to build failures.

RQ4 aims to evaluate the performance in resolving the DC is-
sues of Pattern-B, We apply smartPip and pip with the Python
built-in virtual environment (i.e.,venv) to install all the Python
projects of each dataset. Note that, since the legacy strategy and the
backtracking strategy behaves the same in our empirical study, we
adopt pip with the backtracking strategy. Moreover, as discussed in
Section 2.2, pip venv, pipenv, and virtualenv work in a similar
mechanism, so we used pip venv as the representative technique.
We exclude Conda as the baseline approach in RQ4. This is be-
cause, the file size of those library versions downloaded by Conda
is typically much smaller than the one of the same library versions
hosted in PyPI. This difference is due to that the library versions
in Conda have been pre-compiled [21]. For example, numpy-1.21.5

downloaded by Conda takes up 4.8MB, while the one in PyPI takes
up to 15.7 MB. We can hardly make a fair comparison with Conda
due to this inconsistency in the file size of the same library version.

To evaluate both of RQ3 and RQ4, we need to resort to the inter-
net to download the Python libraries from the Python ecosystem.
The network bandwidth would affect the speed of download. To
make the comparison fair, we set the router used in our experiments
and bound the network bandwidth as 10Mbps.

5.2 Answer to RQ3

Table 3 shows the success rate of smartPip and the two baseline
approaches. Conda fails to install the libraries for 86.7% of the
projects in the three datasets. These failures are not caused by the
dependency resolving mechanism of Conda. Actually, they are
due to the fact that the small-scale Python ecosystem of Conda
(as described in Section 2.3) does not contain the desired libraries
that these evaluation subjects require. smartPip successfully solves
all the DC issues of Pattern-A. pip with the backtracking strategy
failed in the Python project imgsync in the WatchMan dataset.



ASE ’22, October 10–14, 2022, Rochester, MI, USA C. Wang, R. Wu, H. Song, J. Shu, and G. Li

Table 4: Time Cost Comparison among pip, Conda, and smartPip.

Dataset pip - backtracking Conda smartPip
Deps TSolv TTotal TSolv SPUSolv TTotal SPUTotal TSolv SPUSolv TTotal SPUTotal

WatchMan 23 105s 738s 266s 0.39X 855s 0.86X 24s 4.38X 634s 1.16X
HG2.9K 29 119s 2,201s 1,306s 0.09X 2,321s 0.95X 26s 4.58X 2,076s 1.06X
AAAI 23 391s 1,648s 2,893s 0.14X 4,023s 0.41X 8s 48.88X 1,252s 1.31X
Sum 75 615s 4,586s 4,465s 0.14X 7,199s 0.64X 58s 10.60X 3,962s 1.16X

Note: The comparison was conducted on the projects that three approaches successfully build.

Deps: the number of additional libraries to download.
TSolv : the time for dependency resolving.
TTotal : the total time to install the dependencies including dependency resolving time and download time.
SPUSolv : the speedup of the dependency resolving time by comparing with pip.
SPUTotal : the speedup of the total time by comparing with pip.

Table 5: Time Cost Comparison between pip and smartPip.

Dataset pip - backtracking smartPip
Deps TSolv TTotal TSolv TTotal Speedup

WatchMan 1,131 1,967s 5,235s 63s 3,264s 1.60X
HG2.9K 202 1,084s 13,535s 89s 11,358s 1.19X
AAAI 2,301 9,561s 30,048s 67s 20,597s 1.46X
Sum 3,634 12,612s 48,818s 235s 35,219s 1.39X

Note: The comparison was conducted on the projects that both SmartPip

and pip successfully build.

Deps: the number of additional libraries to download.
TSolv : the time cost for dependency resolving.
TTotal : the total time to install the dependencies including dependency resolving
time and download time.

This failing case was due to the large search space of the back-
tracking which has been discussed in Section 3.2.1. smartPip can
successfully resolve this DC issue and it costs only 40.71 seconds
to complete the installation of all the required libraries.

As Conda and pip cannot successfully install the required li-
braries for all the subjects, to fairly compare the time cost of the
three approaches, we conduct the comparison on those subjects (16
in total) where the three approaches successfully build as shown in
Table 4. To resolve dependency, pip requires 75 additional libraries
to be downloaded, leading to the time cost of 615 seconds. Conda
leverages SAT solving to resolve dependency, and the time cost
including SAT expressions construction and solving is 4,465 sec-
onds, which is much higher than pip. The speedup of Conda over
pip in dependency resolving ranges from 0.41X to 0.95X. smart-
Pip leverages SMT solving to resolve dependency, and achieves the
highest efficiency compared with the other baseline approaches.
The time cost of smartPip in dependency resolving, including SMT
expressions construction and solving, is 58 seconds in total, and
its speedup over pip ranges from 1.06X to 1.31X. In terms of the
total time cost, smartPip achieves the best performance among the
three approaches. The speedup of smartPip over pip is 1.16X. Note
that, as discussed in Section 5.1, the file size of the library versions
downloaded by Conda is smaller than the one from PyPI, and thus
Conda actually requires less time to download the desired libraries.
Even with such an advantage, Conda still achieves the highest time
cost due to its expensive dependency resolving.

To better understand the efficiency of smartPip and pip with
the backtracking strategy in resolving DC issues of Pattern-A , we
include more subjects for evaluation. Table 5 shows the comparison
of the subjects (119 in total) that both smartPip and pip success-
fully build. To resolve dependency, pip requires 12,612 seconds
to download 3,634 additional libraries for verifying version con-
straints, while smartPip only costs 235 seconds by SMT solving.

Table 6: Evaluation for RQ4.

Dataset
pip - venv smartPip

TTotal Disk TTotal Speedup Disk SR_Rate

WatchMan 5,408s 7,632 2,388s 2.26X 4,995 34.55%
HG2.9K 13,653s 13,537 2,090s 6.53X 4,974 63.26%
AAAI 30,226s 50,997 5,822s 5.19X 10,066 80.26%
Sum 49,287s 72,166 10,300s 4.79X 20,035 72.24%

Disk: the disk usage by the dependent libraries (MB).
TTotal : the total time of installing the dependencies in the virtual environments.
SR_Rate: the rate of the hard disk space reduction.

The speedup of smartPip over pip with the backtracking strategy
ranges from 1.19X to 1.60X in the three datasets.

In summary, smartPip achieves the highest success rate and
efficiency in resolving DC issues of Pattern-A, comparing with both
pip with the backtracking strategy and Conda.

5.3 Answer to RQ4

Table 6 shows the comparison results between smartPip and pip
with the built-in virtual environment venv. In terms of the time
cost, the speedup of smartPip over pip with venv ranges from
2.26X to 6.53X. The above speedup is mainly due to two reasons.
The first one is the same as we discussed in Section 5.2. smartPip is
more lightweight than pip with the backtracking strategy in finding
compatible versions of the concerned libraries. The second one
is that, smartPip shares the compatible common libraries among
different virtual environments and thus avoids having to download
libraries for multiple times. Take the HG2.9K dataset as an example.
As shown in Table 5, the speedup brought by the constraint solving
of smartPip is only 1.19X. In Table 6, when sharing the common
compatible libraries among different virtual environments, smart-
Pip achieves a speedup of 6.53X comparing to pip with venv, which
is much higher than the one brought by the constraint solving.

In terms of the hard disk space, the reduction of smartPip over
pip with venv ranges from 34.55% to 80.26%. This reduction is
mainly because smartPip can share the common compatible li-
braries among different virtual environments as far as possible. We
take Figure 3(b) as an example. To install tsktsk-0.3.1 and yamlflow-

0.0.9, pip isolated the two incompatible libraries pyyaml by cre-
ating two virtual environments, venv-1 and venv-2 respectively.
In venv-1, the project tsktsk-0.3.1 includes the version constraint
“requests == 2.24.0”, and thus install requests-2.24.0 eventually. In
venv-2, according to the version constraint “requests >= 2.14.2 ∧
requests! = 2.18.0”, pip will follow the default policy to download
requests-2.27.1. Due to the isolation of venv-1 and venv-2, two ver-
sions of request have been downloaded and stored. Our approach
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smartPip also creates two virtual environments but shares the li-
braries in the local repository. After installing tsktsk-0.3.1 in the first
virtual environment, its library requests-2.24.0 was stored in the
local repository. When installing yamlflow-0.0.9, smartPip consid-
ered that the local library requests-2.24.0 was compatible with the
version constraints “requests >= 2.14.2 ∧ requests! = 2.18.0”, and
thus would reuse it based on the constraint optimization process.

6 THREATS TO VALIDITY

Internal Validity.TheDC issue selectionmay threaten the validity
of our empirical study. To reduce this threat, we leveraged the DC
issue dataset collected in the prior study, and manually reproduced
them to assure the data quality. Moreover, in the experiment, we
limit the network bandwidth to make the comparison fair. However,
due to the possibility of the fluctuation of the network bandwidth,
the measurement of the time cost for downloading the libraries
would likely be inaccurate.
External Validity. The evaluation shows that our technique is
effective in resolving DC issues in Python projects. However, to
generalize our technique to other software ecosystems would re-
quire the domain knowledge about the dependency management
and installation strategies. Moreover, the effectiveness of our tech-
nique in resolving DC issues of Pattern-B should be evaluated by
real developers in the actual users’ local environment. Performing
a user study is important future work.

7 RELATEDWORK

Dependency Resolving. Dependency resolving is the core of
package management tools. A recent study [23] summarized the
characteristics of the existing dependency resolving mechanisms in
different package management tools for different software ecosys-
tems. Due to the diversity of dependency resolving mechanisms,
DC issues manifest differently. Various recent studies [33, 41–44]
have been proposed to understand and detect the DC issues in
different software ecosystems. For example, Maven [11], a pack-
age management tool for Java ecosystem, adopts the nearest win
strategy to resolve dependency when DC issues occur. Some re-
cent empirical studies have found that, DC issues in Maven do
not lead to build failure, but would cause either runtime exception
[42] or inconsistent semantic behaviors [44]. Based on that, some
researchers have proposed static analysis techniques [42] and dy-
namic analysis techniques [43, 44] to detect DC issues in Maven.
NuGet [18], a package management tool for .Net ecosystem, lever-
ages the version constraints to resolve dependency, while it can
tolerate some version constraints to be unsatisfied without causing
build failures. Wang et al. [33] studied the manifestation patterns
and the fixing strategies of DC issues in NuGet, and proposed an
efficient approach NuFix to adjust the version constraints to fix
DC issues. Our work targets a different ecosystem, the Python
ecosystem, whose package management tools [15, 19, 20] require
all the version constraints to be satisfied. A recent study [41] has
discovered the manifestation patterns of Python DC issues under
the most popular Python package management tool, pip, and pro-
posed a detection tool WatchMan. Different fromWatchMan, our
work reveals the new characteristics of DC issues under the new

dependency resolving strategy which was released after Watch-
Man. Our approach can also resolve DC issues without changing
the version constraints. Other package management tools which
encode dependency resolving as an SAT problem, such as Conda
[15] and Composer [14], are also relevant to our work, as they can
be used to resolve DC issues. In contrast to them, our work encodes
dependency resolving into an SMT problem for solving, and can
mitigate the performance issues by reducing the time complexity.
Build-Failure Repair.Mukherjee et al. [38] studied the relation-
ships between Python project build reproducibility and third-party
dependencies, and proposed a tool named PyDFix to detect and
fix the unreproducibility problem. Macho et al. [35] proposed a
technique to fix build failures in Maven projects due to outdated
dependencies using three repair strategies, namely: updating ver-
sion, removing dependencies, and adding repositories. By contrast,
we derived the optimal solution within the existing version con-
straints without changing the project’s configuration file, in order
to find solutions instantly. Horton et al. [30] developed a technique,
DockerizeMe, for inferring the dependencies required by code
snippets automatically. DockerizeMe starts with offline knowl-
edge acquisition of the resources and dependencies for popular
Python packages from the PyPI ecosystem. It then builds Docker
specifications using a graph-based inference procedure. V2 [31] is
an upgraded version of the DockerizeMe tool, which can work
with multiple environments and inference-dependent versions. It
uses code execution information and existing API crash information
to recommend candidate configurations. Lou et al. [34] proposed a
technique HireBuild to fix Gradle build failures by mining the his-
torical fixing records. The aforementioned studies derive the fixes
of the build failures based on the historical information and com-
mon dependency configurations adopted by open source projects.
However, such derived fixes can potentially induce the DC issues.
Our approach allows developers to promptly fix the build errors
of Python projects during installation, by finding the appropriate
solutions satisfying all the version constraints.

8 CONCLUSION

In this work, we conducted an empirical study to revisit the char-
acteristics of DC issues under the pip with backtracking strategy.
We found that the resolving strategy for the DC issues of Pattern-A
suffers from the efficiency issue, while the one for the DC issues of
Pattern-Bwould lead to a waste of time and space. Based on the find-
ings, we propose a tool smartPip to overcome the limitations of the
fix strategies, and conduct a systematic evaluation. The evaluation
results demonstrate that our technique is promising. In the future,
we plan to evaluate the usefulness of our approach by deploying
it in the real-world developers’ environments. The source code of
our tool can be found at https://github.com/smartpip/smartpip.
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