Sampling Program Quality

Hongyu Zhang and Rongxin Wu

School of Software
Tsinghua University
Beijing 100084, China
{hongyu,wrx09} @tsinghua.edu.cn

Abstract— Many modern software systems are large, consisting
of hundreds or even thousands of programs (source files).
Understanding the overall quality of these programs is a resource
and time-consuming activity. It is desirable to have a quick yet
accurate estimation of the overall program quality in a cost-
effective manner. In this paper, we propose a sampling based
approach - for a large software project, we only sample a small
percentage of source files, and then estimate the quality of the
entire programs in the project based on the characteristics of the
sample. Through experiments on public defect datasets, we show
that we can successfully estimate the total number of defects,
proportions of defective programs, defect distributions, and
defect-proneness - all from a small sample of programs. Our
experiments also show that small samples can achieve similar
prediction accuracies as larger samples do.

Keywords- Sampling, program quality, software quality
assurance, defect prediction, statistical quality control

L INTRODUCTION

One challenge in today’s software engineering is to deliver
high-quality software on time within budget. Software quality
is often measured in terms of defect'. Software quality
assurance (SQA) is vital to the success of a software project.
However, checking software quality is a resource and time-
consuming activity, which may include manual code
inspections, technical review meetings, static analysis, model
checking and intensive software testing. Modern large software
projects often consist of hundreds or even thousands of
programs (source files). It could take much time and effort
before we can achieve a complete understanding of a project’s
current quality status.

We believe it is significant to be able to obtain a quick yet
accurate estimation of the overall quality of programs in a
software project before full-scale SQA activities are completed.
The ability to quickly estimate overall program quality can
improve the cost-effectiveness of the SQA practices. For
example, managers can allocate limited SQA resources more
efficiently based on the estimation. For an outsourced project,
the managers can quickly decide whether to reject the project
due to its poor quality, without having to wait for all SQA
activities to finish.

! Note that the wider definition of software quality includes many
quality attributes such as reusability, maintainability, etc. In this
study, we only measure software quality in terms of defects.

In this paper, we propose a sampling-based approach to
program quality estimation. Sampling is a statistically sound
and matured sampling technique [7, 20]. A small sample taken
from the population can be used to draw inferences about the
population. In this paper, we focus on simple random sampling,
where each individual in a sample is chosen randomly and
entirely by chance, such that each individual has the same
probability of being chosen. That is, each member in a
population has an equal chance of inclusion in the sample.

Although sampling has been widely used in many areas
such as statistical quality control and market research, it has not
been well explored in the area of software quality assurance. In
our approach, we apply the simple random sampling method to
SQA. We sample a small percentage of programs, examine the
quality of the sampled programs, and then infer the quality of
the entire population of programs in the software system based
on the characteristics of the sample. In particular, we try to
answer the following research questions:

® (Can a sample be used to estimate the total number of
defects as well as the total number of defective programs
in a project?

® Can we understand the distribution of defects across
programs based on a sample?

® (Can we build cost-effective defect prediction models
based on a sample?

® How different sample sizes affect the estimation accuracy?

® What is the optimal sampling plan for
rejection/acceptance of software quality?

To answer the above questions, we perform extensive
experiments on the public Eclipse defect datasets. Our
findings are as follows:

® Sample-based defect estimation: We confirm that based
on a small sample drawn from the entire population of
programs, we can accurately estimate the proportion of
defective programs (i.e., the number of programs having
at least one defect), as well as defect totals (i.e., the total
number of defects). For example, based on a 10%
random sample drawn from the Eclipse 3.0, we can
successfully estimate the total number of defects as well
as defective programs, with the average relative
prediction errors less than 5%.

® Sample-based estimation of defect distribution: We find
that the distribution of defects in a sample is skewed,
following the Weibull function. Furthermore, we can

26th IEEE International Conference on Software Maintenance in Timisoara, Romania

978-1-4244-8628-1/10/$26.00 ©2010 IEEE

george
26th IEEE International Conference on Software Maintenance in Timișoara, Romania

george

george
978-1-4244-8628-1/10/$26.00 ©2010 IEEE

george

george

estimate the distribution of defects across all the
programs in a project via a small sample.

® Sample-based defect prediction. We can construct a
classification model based on a small sample to predict
the defect-proneness of un-sampled program. Sample-
based defect prediction is particularly advantageous
when historical defect data is not available. Furthermore,
we find that a semi-supervised learning called Co-Forest
is more effective in constructing sample-based defect
prediction model.

® The impact of different sample sizes: We experiment
quality sampling with different sample sizes. We find
that larger sample sizes do not always improve
estimation accuracy significantly. A small sample often
achieves similar estimation accuracy as large samples do.

® Sample-based quality control: We propose to use
sequential probability ratio test (SPRT) to help project
managers make decision on rejection or acceptance of
program quality based on a small sample.

Our methods are simple yet effective. The ability to
estimate the quality of the whole project based on a small
sample is particularly useful when we want to quickly
understand the overall software quality in a limited time frame
and in a cost-effective manner. Such information could help
project managers make better decisions in SQA practices. We
believe our methods have potential to be applied to industrial
practices as a cost-effective software quality assurance
measure.

The organization of the paper is as follows. In Section II,
we introduce the simple random sampling method. In Section
III, we describe our experiments on the application of random
sampling to software quality estimation. Section IV describes
the estimation of defect distribution based on a sample. Section
V describes how a small sample can be used to construct a
classification model for predicting defective programs. In
Section VI, we introduce optimal sampling plans for software
quality control. We introduce related work in Section VII,
discuss the threats to validity in Section VIII and conclude the
paper in Section IX.

II. RANDOM SAMPLING

When a population is very large, it is often costly and
impractical to investigate each member of the population to
determine the characteristics of the population. For example,
television operators want to know the proportion of television
viewers who watched the Olympic Game. As a practical
alternative, we take a small sample from the population and use
the sample statistics to draw inferences about the population
parameters.

Simple random sampling is a matured sampling technique
that has been widely applied to many areas such as statistical
quality control, market research and public opinion survey. In
simple random sampling, each member in a population has an
equal chance of inclusion in the sample. We assume that
sampling is done without replacement so that each member of
the population will appear in the sample at most once.

Some basic statistics about simple random sampling are as
follows. For a population of size N and a sample of size n (n <
N), we denote the values of the sample individuals by X}, X, ...,
X,. The random variable X; could be a numerical value or a
boolean value (0 or 1). The sample mean X is the average value

of the sample, which is defined as yzli x - If the value of
n o3

each individual is a boolean value (representing the presence or
absence of certain characteristic), the X is also denoted as p,
which is the proportion of the sample that posses the
characteristics. According to the central limit theorem [7], the
sampling distribution of the mean of a random sample drawn
from any population is approximately normal for a large
sample size. The central limit theorem also reveals that X is
approximately normally distributed, even the underlying
distribution of population is non-normal.

There are two major methods - point estimation and interval
estimation - for estimating the properties of the population
based on sample statistics. The point estimation is to directly
estimate the parameters of population using selected statistics
of a single sample. For example, we can use the sample mean

X and its standard error S to estimate the population total T
and its standard error S; as follows:

T=NX,S,=NS.

The interval estimation is to estimate the range of a
population parameter calculated from the sample, at certain
confidence level /-a (0< a <1). The confidence intervals for

S, X+Z .S.)and
r-z,8,,T+Z,,S,) respectively, where Z is the standard
normal distribution. When «a is 0.05, Z,, = 1.96.

population mean and total are ()_(—Z w2

Table I summarizes some important equations used in
sample-based estimations. For detailed derivations of the
equations, we refer the readers to statistics books such as [20].

To generate a random sample, we use the SPSS statistical
package and specify the approximate percentage of the
individuals to be selected. We should note that any tool that
supports pseudo-random number generation can perform such
sampling too.

TABLE L SOME STATISTICS OF SIMPLE RANDOM SAMPLING
Para- Point Standard Error Interval Estimate (at
meter Estimate of Point Estimate confidence level / - a)
Mean 7 =ii){ R (X-z,,5.,X+z2,5.)
ni3 l N N
Total T=NX S, =NS; (T-z,,5.,T +z,,s.)
Propor- Y = 5 A1—p Y— Y
tion X p SX =Si> = 2t f) 1_]% (X Za/zs,a»X'i'Za/zS,;)
n—

III. SAMPLE-BASED DEFECT ESTIMATION

We apply the simple random sampling technique to
estimate defect numbers. We randomly choose a small
percentage of source files as a sample, examine the quality of
the sampled programs, and then estimate the quality of entire

program populations in a software project based on the analysis
of the sample. We can perform both point estimation and
interval estimation, for estimating defect totals and proportions
of defective programs. In this way, we can achieve a quick yet
accurate understanding of software quality by only examining a
small fraction of the programs. In this section, we describe our
experiments on sample-based estimation of defects.

A. Datasets

We first describe the datasets that are used throughout this
paper. We perform experiments on the public Eclipse defect
data provided by the University of Saarland’. Eclipse is a
widely used integrated development platform for creating Java,
C++ and web applications. The Eclipse defect data was
collected by mining Eclipse’s bug databases and version
achieves [28]. It has been used by many studies on software
defect prediction [17, 24, 27, 28, 30]. Using public data enables
replications and comparisons of the results.

We experiment with Eclipse 2.0 and 3.0, as well as the
JDT.Core component in Eclipse 3.0 and the SWT component
in Eclipse 2.0. In this study we only examine the pre-release
defects, which are defects reported in the last six months before
release. Table II summarizes the datasets used in this study.
The total number of defects and the total number of defective
programs (i.e., the number of programs that contain at least one
defect) are also given. Eclipse 2.0 and 3.0 are large-scale
systems, containing in average 1050 KLOC, 8660 programs
(source files) and 7500 defects. The JDT.Core dataset contains
939 programs, 181 KLOC and 1759 defects. The SWT dataset
contains 843 programs, 194 KLOC and 501 defects.

TABLE II. THE DATASETS
Project LOC #programs #defects #defective
(source files) programs
Eclipse 3.0 | 1306K 10,593 7422 2913 (27.50%)
Eclipse 2.0 | 797K 6729 7635 2611 (38.80%)
JDT.Core 181K 939 1759 502 (53.46%)
SWT 194K 843 501 208 (24.67%)

B. Estimating Defect Totals and Proportions

We now describe our method using a 10% sample of
Eclipse 3.0. We first draw 10% of the programs randomly from
the population of 10,593 programs in Eclipse 3.0. The resulting
sample contains 1035 programs, 9.7% of total LOC, and 752
defects obtained from 28.70% (or 297) sampled programs. The
sample mean (the average number of defects in the sampled
program) is 0.727, with standard deviation 0.066. Note that the
size of actually selected random sample is only an
approximation of the specified percentage (in this case, actually
1035 instead of 1059 programs are selected), as each individual
in the sample is selected from independent random numbers.

Based on the 10% sample, we can estimate the total number
of defective programs (programs contain at least one defect).
By applying point estimation, we estimate the proportion of the
defective programs in Eclipse 3.0 as: p = p =28.70%. We can

then estimate the number of defective programs in Eclipse 3.0
based on the sample:

2 http://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/

T = NX = Np=10593x0.287 = 3040 .

which is about 28.69% of all programs. Note that the actual
number of defective programs in Eclipse 3.0 is 2913 (27.50%
of all programs), which is very close to the estimated number.
We evaluate the estimation accuracy using the MRE
(Magnitude of Relative Error) measure, which is computed as
(100% * |Estimate - Actual|/Actual). A commonly accepted
criteria is MRE<=25% [3]. Here the estimation’s MRE value is
only 4.36%, showing that the point estimation of defect
proportion is very accurate.

We can also calculate the standard error S; and the 95%
confidence interval for the total number of defective programs
as follows:

S =NS, =N pA=p) | _n
’ ! n-1 N

10593 X\/0.287(1—0.287)X | 1035
1035 — 1 10593

=142

(T-1.96s,,T +1.96s,) =
(3040 -1.96x142,3040+1.96x142) = (2762,3317)

In similar way, we can estimate the total number of defects
(defect total). We calculate the average number of defects in
Eclipse 3.0 based on the 10% sample. We then estimate the
defect total as follows:

T = NX =10593x0.727 = 7697

Note that the actual number of defects in Eclipse 3.0 is
7422. The MRE value is only 3.70%, showing that the result of
point estimation of defect total is very accurate. The 95%
confidence interval of 7'is (6337, 9057).

20—

Frequency

Mean =2923.4303

5—
Std. Dev. =138.86165
N =100
T

T T
2400.00 2600.00 2800.00 3000.00 3200.00 3400.00 3600.00

#Defective Programs

Figure 1. The estimations based on 100 * 10% samples of Eclipse 3.0

The experiment described above is based on one single
random sample. To confirm the reliability of our method, we
perform the above experiment 100 times. We draw 100*10%
samples from the population of Eclipse 3.0 programs, estimate
the total number of defective programs based on each sample,
and depict a histogram of the estimations (Figure 1). We then
examine the shape of sampling distribution and determine the
confidence level. In Figure 1, the estimated numbers are
centered on the value 2913, which is the actual number of
defective programs in Eclipse 3.0. The average of the 100

estimations is 2923. The sampling distribution is approximately
normal, which is consistent with the central limit theorem. It
can also be computed that a vast majority (95%) of sample
means differ from the population mean by less than two
standard deviations. That is, if we sample the Eclipse 3.0
programs 100 times, we can obtain reasonably accurate
estimation 95 times. Therefore, we are confident of using one
single sample of programs to estimate the quality of the entire
programs in the project.

Table III summaries the average results of 100 experiments
based on 10% samples, for estimating both defective programs
and defect totals for all studied projects. The averaged
estimations of 100 experiments are close to the actual values.
For all estimations except the estimation of defect totals for
SWT, the averaged MRE values are below 25% (ranging from
1.72% to 19.95%). For the estimation of defect totals for SWT,
its MRE is 26.98%, which is just slightly higher than the 25%
criteria. Therefore, all estimations can be considered
satisfactory. Among 100 times of sampling, 95-98 times lead to
sampling errors less than two standard deviations (as shown in
the Confidence column). These results show that we can obtain
a good estimation of defect totals and proportions in a large
project based on a small sample with high confidence.

TABLE IIL. THE AVERAGE DEFECT ESTIMATION RESULTS BASED ON
100*10% RANDOM SAMPLES
Project Actual Estimate | Std. Confi- | MRE
(€] Err. dence
(51
#defective Eclipse 2913 2923 139 95% 3.84%
programs 3.0 (27.50%) | (27.59%)
Eclipse 2611 2605 132 96% 4.94%
2.0 (38.80%) | (38.71%)
JDT. 502 501 44 96% 7.02%
Core (53.46%) | (53.35%)
SWT 208 208 38 95% 14.34%
(24.67%) | (24.67%)
#defect Eclipse 7422 7550 591 97% 1.72%
totals 3.0
Eclipse 7635 7652 703 98% 7.31%
2.0
JDT. 1759 1739 433 95% 19.95%
Core
SWT 501 510 176 95% 26.98%

C. The Impact of Sample Size

So far, we only described the estimation results based on
the 10% samples drawn from the program population. We also
experiment with different sample sizes (5%, 15%, 20% and
25% of the program population). All sample sizes achieve good
estimation results. For example, for Eclipse 3.0, when
estimating the defect totals, the MRE values range from 1.62%
to 8.56%. When estimating the defect proportions, the MRE
values range from 0.98% to 4.35%. All MRE values fall within
the acceptable criteria (<=25%).

We also compare the sampling errors introduced by
different sample sizes. The results for all studied projects are
shown in Figures 2 and 3. The sampling error (standard error of
the sample mean) decrease when the sample size n increases.
However, the decreasing rate is getting slower. For example,
for estimating the number of defects in Eclipse 3.0, the increase

of sample size from 5% to 15% decreases the sampling error by
0.033 (from 0.080 to 0.047). While further increase of sample
size to 25% only decreases the sample mean by 0.012 (from
0.047 to 0.035). For estimating defect proportions for Eclipse
3.0, the increase of sample size from 5% to 15% decreases the
sample mean by 0.009 (from 0.019 to 0.010). While further
increase of sample size to 25% only decreases the sample mean
by 0.002 (from 0.010 to 0.008). Approximately the sampling
error is reversely proportional to the square root of n:
A.o1/+/n . Therefore, when ., is large enough, further

increasing sample size will not significantly improve the
estimation accuracy.

0.7

0.6 F SWT
- ==]JDT. Core
o 0.5 1 — 1 B
& Eclipse 3.0
L’:D 0.4 =4=[clipse 2.0
=
= 0.3 r
g
5} 0.2 1
w2

0-1 %

0 ;

0% 5% 10% 15% 20% 25% 30%

Sample Size

Figure 2. Sampling size vs. error (for estimating defect totals)

0.08
0.07 r *=SWT
é 0.06 | =& JDT. Core
E 0.05 | Eclipse 3.0
=>~Fclipse 2.0
% 0.04 f
= 0.03 |
£
& 002 | \\"\x\x
0.01
0
0% 5% 10% 15% 20% 25% 30%

Sample Size
Figure 3. Sampling size vs. error (for estimating defective programs)

As software quality assurance is a time and resource
consuming task, a cost-effective sampling should keep the
sample size small yet representative. We explore the minimum
sample size for quality estimations with respect to certain
confidence level and error rate. It is known that at the
confidence level /-a, the sampling error for defect proportion

P is computed as:
A=Z. p(-p) /l_g
! N on-1 N

Therefore, when N>>n, the sample size that satisfies the
requirements of confidence level and error rate is:

Zu/'.’ ZA s
”—[Aj p(-p)

Clearly, when f? =0.5, the above equation has the maximum

value. Therefore, a consecutive value for the minimum sample
size n, is obtained as follows:

2
n.o= Z 4
©ol 24,

As an example, if the required sampling error is less than
10% at the confidence level 90%, the above equation suggests
the minimum sampling size to be 68:

2 2
SE TS .
24, 2x0.1

To test the effectiveness of using the minimum sample size
for estimating defect proportions, we randomly choose 68
programs from all studied projects and then perform defect
estimation based on the sample. This process is repeated 100
times and the averaged results are reported in Table IV. We can
see that the estimated defect proportions are close to the actual
values. All MRE values are within the acceptable range
(<=25%). The results confirm that using the sample size as
small as 68 programs, we can still achieve good estimation
accuracy. This makes the sampling method more cost-effective
in practice.

TABLE IV. THE AVERAGE RESULTS FOR ESTIMATING DEFECTIVE
PROGRAMS BASED ON 100*68 SAMPLES
Project Actual Estimate Std. Err | Conf- MRE
(¢)) (AY)) idence

Eclipse 3.0 | 2913 2893 519.92 96% 14.19%
(27.50%) (27.30%)

Eclipse 2.0 | 2611 2597 381.40 95% 11.68%
(38.80%) (38.60%)

JDT.Core 502 492 50 94% 8.07%
(53.46%) (52.40%)

SWT 208 206 47 94% 17.78%
(24.67%) (24.44%)

IV. SAMPLE-BASED ESTIMATION OF DEFECT DISTRIBUTION

It is often desirable to be able to answer questions such as
“how many defects the top 10% most defective programs
contain?” The answers can help project managers achieve a
better understanding of the overall software quality and a better
allocation of SQA resources. Previous works [8, 19] shows that
the distribution of defects in a large software system is skewed.
In this section, we show that by analyzing the characteristics of
a small sample, we can estimate the defect distribution in a
large software system.

We use the Eclipse 3.0 defect dataset as an example to
illustrate our method. For the 10% Eclipse 3.0 sample that is
described in Section III.B, we rank all the programs (source
files) by the number of defects they are responsible for, and
calculate the cumulative percentage of defects over programs.
We find that in the sample, the defect distribution is highly
skewed --- that a small number of programs accounts for a
large proportion of the defects. For example, the top 10%
“most defective” programs in the sample contain 71.41%
defects. We also find that the defect distribution in the sample
is very similar to the distribution in the population. For
example, in the actual population of Eclipse 3.0 programs, the
top 10% “most-defective” programs contain 71.34% defects,
which is very close to the percentage in the 10% sample. Figure
4 illustrates the cumulative percentages of defects over

programs in samples and in population. Both 10% and 68
samples can model the actual distribution of defects well, with
the larger sample (10%) having the better fit. We obtained
similar results for other projects. These results suggest that we
can achieve a good understanding of the distribution of defects
in a large software system by only analyzing a small sample.

In our prior work [24], we discovered that when programs
in a large software system are ranked according to the number
of defects, the distribution of defects follows the Weibull
distribution, which is one of the most widely used probability
distributions in the reliability engineering discipline. In this
study, we find that the same regularity exists in a random
sample of program defect data. The curves shown in Figure 4
can be also modeled by Weibull functions. The CDF
(cumulative density function) of the Weibull distribution can be

formally defined as:
3
P(x)=1- exp[— [xj J
y

,_.
—

68 Samq%g
*

All data

%Defects

S e e
(2]
L

10% Sample

0t—- ‘ ‘ ‘ ‘ ‘ : : :
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%Programs

Figure 4. The distribution of defects in samples (Eclipse 3.0)

Using statistical packages such as SPSS, we are able to
perform non-linear regression analysis and derive the
parameters for each distribution. We compute the coefficient of
determination (R’) and the Standard Error of Estimate (S,) to
statistically compare the goodness-of-fit of the Weibull
distribution. Table V summarizes the Weibull parameters and
the accuracy measures for the 10% samples. These results
confirm that defects in a sample follow the Weibull
distribution, with R’ values ranging from 0.983 to 0.994 and S,
values ranging from 0.004 to 0.028.

Having understood the nature of defect distribution, we can
estimate the number of defects the top x% “most defective”
programs contain based on a sample as follows:

B
N, =R_(x)><T=[1—exp[—[xJ DXT
4 .

where Py(x) is the distribution of defects in a sample, modeled
by the Weibull function, 7 is the estimated total number of
defects. As an example, we evaluate the above equation using
the 10% sample of Eclipse 3.0 given in Section III.B. The Py(x)
of the 10% sample is calculated based on Table V and the point
estimate 7 is given in Section III.B (7 = 7697). We can then

estimate the number of defects the top 5%, 10%, 15% and 20%
“most-defective” programs are responsible for. The results
(Table VI) show that all estimates are accurate. For example,
we estimate that the top 10% “most defective” programs in
Eclipse 3.0 contain 5634 defects, which is close to the actual
number 5295. For all estimations, the MRE values range from
1.08% to 6.40%, with an average of 4.10%.

TABLE V. THE WEIBULL DISTRIBUTION OF DEFECTS IN 10% SAMPLES
Project Y B R? S.
Eclipse 3.0 0.07 0.80 0.989 0.017
Eclipse 2.0 0.07 0.76 0.992 0.015
JDT.Core 0.16 0.84 0.983 0.028
SWT 0.08 0.98 0.994 0.004

TABLE VL ESTIMATING THE NUMBER OF DEFECTS IN TOP X% MOST

DEFECTIVE PROGRAMS IN ECLIPSE 3.0

s [pw | P T]
5% 0.53 4080 3969 2.80%
10% 0.73 5634 5295 6.40%
15% 0.84 6452 6098 5.80%
20% 0.90 6921 6628 4.42%
25% 0.94 7235 7158 1.08%

V. SAMPLE-BASED DEFECT PREDICTION

A. Training Classification Models

Software defect prediction (predicting if a particular
module is defective) can be seen as a classification problem in
machine learning. A classification model can be learnt from the
training data with labels Defective (having one or more
defects) and Non-defective (no defects), the model is then used
to classify unknown modules. In recent years, many defect
prediction models have been proposed (e.g., [11, 13, 14, 16, 18,
19, 25, 27, 29, 30]).

In this section, we explore if an effective defect prediction
model can be built based on a small sample. For a project, we
first select a small percentage of programs. We then use data
collected from this percentage of programs as a sample to train
a defect prediction model. The model can be used to predict
defect-proneness of an un-selected program in the project.

Unlike the existing work on defect prediction, our method does
not require historical data from past projects, which may not be
available for some organizations.

We choose three commonly used classification techniques,
namely Decision Tree (a C4.5 decision tree learner), Naive
Bayes (a standard probabilistic Naive Bayes model), and
Logistic Regression (a linear logistic regression based
classification). All classifiers are supported by WEKA [22], a
public domain data mining tool.

We also apply a new machine learning algorithm, called
Co-Forest [15, 31], to defect prediction. Co-Forest is a semi-
supervised learning [4], which constructs a model by learning
from a small number of labeled data and then refining with the
information derived from the unlabeled ones. The Co-Forest
method has been successfully applied to the domain of
computer-aided medical diagnosis [15]. In computer-aided
medical diagnosis, conducting a large amount of routine
examinations places heavy burden on medical experts. The Co-
Forest method was used there to help learn hypothesis from
diagnosed and undiagnosed samples in order to assist the
medical experts in making diagnosis. The detailed algorithm of
Co-Forest is presented in [15]. Basically, it works as follows.
N random trees are firstly initiated from the training set
bootstrap sampled from the labeled set for creating a Random
Forest. Then, in each learning iteration, each random tree is
refined with the newly labeled examples selected by its
concomitant ensemble. The final prediction is made by
ensembling all the classifiers. This approach exploits the
advantage of both semi-supervised learning and ensemble
learning [31].

We apply these four machine learning techniques to build
prediction models from a sample of programs in the studied
projects, and then use the models to predict the defect-
proneness of un-sampled programs. The prediction models are
learned from 198 static code attributes, including complexity
metrics (such as LOC, cyclomatic complexity, number of
classes, etc.) and metrics about abstract syntax trees (such as
number of blocks, method references, etc.).

We perform experiments on all the datasets. For each
dataset, different sizes of samples (consisting of 5% to 50% of
source files) are chosen. The classification accuracy is
evaluated by using the Recall (the percentage of defective
programs detected), Precision (the percentage of actual
defective programs in the reported cases), and F-measure (the
harmonic mean of Precision and Recall).

TABLE VII. DEFECT PREDICTION BASED ON SAMPLES (JDT.CORE)
Co-Forest Logistic Regression Naive Bayes Decision Tree

Sample

Sizep Recall | Precision | F-measure | Recall | Precision | F-measure | Recall | Precision | F-measure | Recall | Precision | F-measure
68 75.0% 71.2% 0.73 70.6% 70.0% 0.70 64.6% 74.7% 0.69 62.1% 64.2% 0.63
5% 73.8% 70.8% 0.72 63.7% 64.4% 0.64 67.6% 73.3% 0.70 70.8% 69.2% 0.70
10% 73.6% 73.2% 0.73 62.6% 65.5% 0.64 61.3% 77.3% 0.68 70.5% 71.2% 0.70
15% 74.6% 73.6% 0.74 62.0% 65.9% 0.64 58.4% 79.5% 0.67 70.7% 72.0% 0.71
20% 74.4% 74.4% 0.74 63.0% 67.0% 0.65 54.6% 81.2% 0.65 71.0% 71.7% 0.71
25% 75.4% 74.2% 0.75 64.8% 67.8% 0.66 54.4% 81.8% 0.65 71.5% 72.1% 0.72
30% 75.4% 75.2% 0.75 66.4% 69.2% 0.68 53.2% 82.4% 0.65 72.1% 72.9% 0.72
40% 75.7% 74.8% 0.75 69.7% 70.4% 0.70 51.3% 83.0% 0.63 72.4% 72.4% 0.72
50% 75.5% 75.6% 0.75 69.9% 72.1% 0.71 50.6% 84.1% 0.63 72.6% 73.6% 0.73

Co-Forest Logistic Regression
0.8 0.75
075 i 0.7 /_______.....-- |
a7 065 B
g oss g
= H__*._-—-A———K = 0.6
g 06 g —
2 _A,..---"c 2 oss —
I oss = i /_ /’/\——
0.5 — s & = e SN ° ’
045 —r" 045 |t —
0.4 0.4 L L
0% 10% 0% 30% 40%: 50% 60% 0% 10% 0% 30% 40%: 50% 60%
sample Size sample Size
Naive Bayes Decision Tree
0.75 0.75
e ———
07 0.7 [t
065 e —
— = — 085
0.6
2 g o
E 0.3 E > M
2 os 2 oss — =
L gas - __ _ - - L /__...-—-.__
T < "y 05
0.4 _ o . s %
035 045 — -
0.3 0.4 L
0% 10% 20% 30% 40% 50% 60% 0% 10% 20% 30% 40% 50% 60%
sample Size Sample Size
—#—Eclipse 3.0 —8—Eclipse2.0 =—d—IDT.Core —=—+—SWT

Figure 5. The comparsions of F-meaures with different sample sizes

T
< :

* %

I I I I
Eclipse3.0 Eclipse2.0 JDT.Core SWT

Figure 6. The box-polts of the F-measures obtained from 100*10% samples
(Co-Forest)

B. Evaluation Results

Table VII shows the results of the defect prediction models
for JDT.Core project, which are obtained from 5% to 50%
samples (as well as a 68 sample consisting of 68 source files),
using four classifiers. All classifiers achieve good prediction
results with different sample sizes (with F-measure between

0.63 and 0.75). The semi-supervised learning method Co-
Forest achieves consistently better prediction results than other
classifiers. For all sample sizes, the Recalls of Co-Forest are
above 73%, the Precisions are above 70%, and the F-measures
are above 0.72. These results are considered satisfactory.

Table VII also shows that for all classifiers, increasing
sample sizes do not necessarily lead to better prediction results.
For example, for the Co-Forest method, when increasing
sample size from 5% to 20%, the F-measure is only improved
by 0.02. When the sample size is further increased to 50%, the
F-measure is essentially not changed.

To show the generality of the results, for each sample size
we also perform the prediction 100 times. Figure 5 shows the
average F-measures obtained by different classifiers. Clearly,
we can see that smaller samples can achieve similar prediction
accuracy as larger samples do. For example, when using the
Decision Tree classifier to predict defects in SWT project,
increasing sample size from 5% to 10% only increases the F-
measure by 0.02, further increasing sample size from 10% to
50% only increases the F-measure by 0.04. The prediction
accuracy tends to become stable. These results show that
building a model with more data does not necessarily lead to
significant performance improvement. However, the savings of
cost resulted from data reduction is significant. Figure 5 also
shows that for all studied projects, in general Co-Forest
achieves better results than other classifiers.

Figures 6 shows the box-plots for the F-measures obtained
from 100*10% samples using Co-Forest. The median F-
measures of 100 predictions for Eclipse 3.0, Eclipse 2.0,
JDT.Core, and SWT projects are 0.46, 0.57, 0.74, and 0.58
respectively. For all projects, the interquartiles (ranges between
upper quartile and lower quartile, i.e., the ranges between the
75th percentile point and the 25th percentile point) are all
narrow (less than 0.06). The ranges between upper tails and
lower tails of the box-plots are also narrow (less than 0.15).
There are only a few data points (less than 4) fall below the
lower tail. These results show that for large samples, the Co-
Forest classifier can achieve good defect prediction accuracy
with high confidence. For the SWT project, the variations
among different predictions are larger (as reflected by the
wider ranges in box-plots). However, the lower quartile is 0.55,
therefore among the 100 predictions, 75 predictions have F-
measures higher than 0.55.

VI. SAMPLE-BASED SOFTWARE QUALITY CONTROL

In software quality control, an organization often sets a
quality standard for the percentage of defective programs. If the
percentage of defective programs in a project under
examination is above certain allowable level, a decision can be
made to reject the project due to its poor quality. Such quality
control measure is especially useful for outsourced projects and
third-party testing.

Based on the percentages of defective programs obtained
from samples, classical hypothesis testing can be applied to test
if the quality of the whole project is acceptable with respect to
certain quality standard. For example, we can formulate null
and alternative hypotheses on the desired percentage of
defective programs, and perform a hypothesis testing via a t-
test. If the result of the t-test concludes with high confidence
that the percentage of defective programs in the whole project
is above the allowable level (say, 30%), a decision can be made
to reject the project.

To optimize sample-based software quality control, we
need not test all programs in a sample before we make decision
on rejection or acceptance of the software quality. A sampling
plan called the sequential probability ratio test (SPRT) [10]
can help us achieve an early determination of software quality,
thus saving considerable data collection efforts. SPRT is a
specific sequential hypothesis test. Unlike classical hypothesis
testing, SPRT can reach a conclusion according to certain
threshold values before all data is collected and analyzed.

In SPRT, the hypotheses are specified as follows:
HO: p <p0
Hl:p>pl

, where p0 is the lower bound below which the quality should
be accepted, pl is the upper bound above which the quality
should be rejected. To test the above hypotheses, the following
ratio is calculated after making m observations x;, x,, ... X,

f, = ﬂ Pr(Xi =X | p :Pl) _ pn("’ (1—p])"’*f’m
L Pr(X, =x, | p=p,) podm (- po)m,(,m

where 4 :Z”' x . Note that the SPRT ratio is often found

with the use 0}‘ logarithms. The stopping rule of SPRT is as
follows:

e B <f,<A: continue sampling

e f,< B: accept HO

e f,=A: accept Hl

, where 4 and B are specified based on the desired type I error

a (false negative ratio) and type II error § (false positive ratio)
as follows:

LU= P

o B (l—a)

As an example, assuming the thresholds p0 = 0.1 and p/=
0.3, the allowed errors a = 0.05, and £ =0.2. Thus 4 = 16 and B
= 0.21. Suppose we have tested a random sample of 17
JDT.Core programs with the following results:
00010010001001010 (1 indicates a defective program and 0
indicates non-defective program). We can calculate the ratio f;;
= 11.91, which is below A4 and above B, therefore we continue
sampling and testing. Suppose the next sampled program turns
out to be a defective program, we obtain f;3= 35.73, which is
above A. Therefore we accept H1 and reject the project because
it does not satisfy our quality standard.

The SPRT process can be also graphically represented, such
as the one shown in Figure 7. The rejection line and the
acceptance line define the three regions (Reject, Accept,
Continue). Decisions are made depending on the region the
actual number of defective programs falls in. The derivation of
rejection and acceptance lines from parameters p0, pl, a, f can
be found at [10]. In Figure 7, the number of defective programs
after sampling 18 programs is 6, which enters the Reject
region. Note that wusing SPRT, the decision of
rejection/acceptance is made only after the testing of a few
programs, thus the time and cost required for software quality
control can be significantly reduced.

7

REJECT -

CONTINUE = Rejection Line

= Acceptance Line

Actual

Number of Defectives

NoOR O R, N W b

ACCEPT

L
m7 8 9 101112131415 16 17 18 19

Number of Programs

Figure 7. Graphical Representation of SPRT

VII. RELATED WORK

A. Statistical Approaches to Software Quality Assurance

Statistical Quality Control (SQC) has been widely used in
traditional industrial engineering and has now become an
integral part of Total Quality Management. In software
engineering area, efforts have been made to apply SQC to
software quality assurance. As early as in 1980, Cho proposed

to define standards for software defect ratio, and to determine
the acceptance of software quality via sampling [4]. Thelin et
al. [21] applied sampling technique to improve software
inspections. They proposed to sample design documents to
increase the efficiency of an inspection process.

Statistical Process Control (SPC) [10] is an important SQC
measure that has been applied to software process
improvement [9, 12]. SPC uses various control charts and
sampling plans to help project managers evaluate if a process is
under control with respect to variation. The control charts are
usually 3-sigma charts, where upper control limit (UCL) and
lower control limit (LCL) specify 3 standard deviation of the
sample mean. If a process stays within the limits, it is assumed
that the process is under control. Otherwise, the process may be
out of control and a search of assigned causes should be
initiated.

Although there are related works on applying statistical
techniques to software quality assurances, we believe that this
area is generally not well explored and lacks of empirical
studies. There is still ampler room for further research. In this
paper, we describe sample-based program quality estimation,
discussing issues such as defect prediction, the impact of
sample size, and SPRT-based sampling plan. It is also
interesting to explore the synergy between our method and the
related work (such as SPC and Six Sigma [1]), aiming for a
complete solution for statistical software quality control.

B. Related Work on Defect Prediction

The ability to predict software quality is important for
software quality improvement and project management. Over
the years, many predictions have been proposed to predict
defect totals and defect-proneness. For example, Compton and
Withrow [6] proposed a LOC-based polynomial regression
model to predict the number of defects in a software system. In
our previous work [26], we analyzed the Eclipse defect data
over a 3-years period, and found that the growth of the number
of defects can be well modeled by polynomial functions.
Furthermore, we can predict the number of future Eclipse
defects based on the nature of defect growth. Kim et al. [14]
predict defects by caching locations that are adjusted by
software change history data. Their method can predict 73%-
95% faults based on 10% files. Menzies et al. [16] build
classification models for predicting defect-proneness using the
Naive Bayes classifier (with probability of detection 71%), but
we pointed out that their model is unsatisfactory when
precision is concerned [23]. Zimmermann and Nagappan [29]
proposed models based on the structural measurement of
dependency graphs. Hassan [11] found that the more complex
the changes to a file, the higher the chance the file will contain
faults. In our prior work, we also proposed code complexity-
based defect-prediction models [25, 27].

The current defect prediction models are not without critics.
These models are all built using historical data from past
projects, assuming that the new projects share the same
product/process characteristics and their defects can be
predicted based on previous data. This assumption may not be
always valid. Firstly, the historical data may not be available
(and reliable) for all projects. Secondly, even some previous
project data is available, whether it can construct effective

prediction models for completely new projects remains to be
verified. This is particularly of concern in a rapid changing
environment, where the requirements, development personnel,
organizational structure, or even process changes. Recently
Zimmermann et al. [30] also ran 622 cross-project predictions
for 12 real-world applications, their results indicate that cross-
project prediction is a serious challenge, i.e., simply using
models built from other projects does not lead to accurate
predictions.

Our methods adopt a statistical approach to quality
estimation. In this study we do not attempt to improve
prediction accuracy or determine the best subset of metrics as
defect predictors. Instead our method is to show that a small
sample can build cost-effective defect prediction models.
Compared to the related work, our method has the following
advantages:

e Does not require historical or other projects’ data.

e Supports the prediction of defect-prone programs as well
as defect totals, proportions and distributions.

e Requires only a small sample of programs.

The proposed sample-based defect prediction method is
independent of the attributes used for model construction. In
this study, we only use static code attributes to build the model.
As suggested in [11, 18, 29], using more types of attributes,
such as changes and dependency metrics, could improve the
accuracy of the prediction. We will investigate more types of
attributes in our future work.

VIIL

In our approach, we draw a random sample from the
population of programs. To ensure proper statistical inference
and to ensure the cost-effectiveness of the proposed method,
the population size should be large enough. Therefore, the
proposed method is suitable for large-scale software systems.

THREATS TO VALIDITY

The simple random sampling method requires that each
individual in a sample to be collected entirely by chance with
the same probability. Selection bias may be introduced if the
program sample is collected simply by convenience, or from a
single developer/team. The selection bias can lead to non-
sampling errors (errors caused by human rather than sampling)
and should be avoided. In our experiments, to ensure the
randomness we use the statistical package SPSS, which can
select a random sample based on computer generated (pseudo)
random numbers.

The defect data for a sample is collected through quality
assurance activities such as software testing, static program
checking and code inspection. As the sample will be used for
prediction, these activities should be carefully carried out so
that most of defects can be discovered. Incorrect sample data
may lead to incorrect estimates of the population.

In our experiments, we used the public Eclipse defect
dataset. Although this dataset has been used by many other
studies [17, 24, 27, 28, 30], our results may be affected if the
dataset is flawed (e.g., there are problems in bug data collection
and recording [2]). Also, Eclipse is an open source project. It is
desirable to replicate the experiments on industrial, in-house
developed projects to further evaluate their validity. This will
be our important future work.

IX. CONCLUSIONS

Statistical inference permits us to draw conclusions about a
population based on a sample that is quite small in comparison
to the size of population, thus improving cost-effectiveness. In
this paper, we propose simple random sampling based methods
for software quality estimation (with respect to defects). From a
small sample of programs we can successfully estimate defect
totals, proportions and distributions for the entire program
population in a project. We have also found the minimum
sample size with respect to error rate and confidence level. A
sample as little as 68 programs can achieve good estimation
accuracy.

Samples can also be used to construct cost-effective defect
prediction models, which can then predict defect-proneness of
an un-sampled program. We find that smaller samples can
achieve similar prediction accuracy as larger samples do. We
also find that the semi-supervised learning method called Co-
Forest performs better in sample-based defect prediction.
Samples can be used to make decisions on rejection or
acceptance of program quality too. We propose to use the
SPRT sampling plan, which allows a decision to be made only
after testing a few programs.

We believe our sample-based quality estimation methods
can help project managers achieve an early yet accurate
understanding of the overall program quality, thus help them
better controls SQA activities and make rational decisions.
Unlike current defect prediction methods, the proposed method
does not require historical defect data, or data from other
companies. Our experiments show that the proposed methods
are simple yet effective.

In future, we will apply our methods to industrial practices
and evaluate their effectiveness. We will also explore if other
sampling methods, such as multi-stage stratified sampling can
improve the estimation accuracy.

ACKNOWLEDGMENTS

We thank Prof. Zhi-Hua Zhou for providing us the code of
Co-Forest, and for his valuable comments on the paper. We
also thank Sung Kim at HKUST for his comments. This
research is supported by the State Laboratory of Novel
Software Technology at Nanjing University, the Key
Laboratory of High Confidence Software at Peking University,
and the Chinese NSF grants 60703060 and 90718022.

REFERENCES

[1] K. Arul and H. Kohli, Six Sigma for Software Application of
HypothesisTests to Software Data, Sofiware Quality Journal (12),
Kluwer Academic, 2004.

[2] C.Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and P.
T. Devanbu, Fair and Balanced? Bias in Bug-Fix Datasets, Proc.
ESEC/FSE 2009, Amsterdam, Netherlands.

[3] L. Briand and I. Wieczorek, Resource modeling in software engineering.
Encyclopedia of Software Engineering, Wiley, pp. 1160-1196, 2002.

[4] C.K. Cho, An Introduction to Software Quality Control, Wiley, 1980.
[5] O.Chappelle, B. Scholkopf, and A. Zien, eds., Semi-Supervised
Learning. MIT Press, Cambridge, MA, 2006.

[6] T. Compton and C. Withrow, Prediction and Control of Ada Software
Defects, J. Systems and Software, vol. 12, pp. 199-207, 1990.

(7]
(8]

9]

[10]
(1]

(12]

[13]
[14]

[15]

[1e]

[17]

(18]

[19]

[20]
[21]
[22]
[23]
[24]

(23]

[26]

[27]
(28]
[29]

[30]

[31]

J. Devore, Probability and Statistics for Engineering and the Sciences,
Duxbury Press, 1995.

N. Fenton and N. Ohlsson, Quantitative Analysis of Faults and Failures
in a Complex Software System, /EEE Trans. Software Engineering, 26
(8), pp. 797-814, 2000.

W. Florac, A. Carleton and J. Barnard, Statistical Process Control:
Analyzing a Space Shuttle Onboard Software Process, /EEE Sofiware,
July/August 2000.

E. Grant and R. Leavenworth, Statistical Quality Control, McGraw-Hill,
1988.

A. E. Hassan, Predicting Faults Using the Complexity of Code Changes,
Proc.ICSE 09, Vancouver, Canada, May 2009.

P. Jalote and A. Saxena, Optimum Control Limits for Employing
Statistical Process Control in Software Process, IEEE Trans. on
Software Engineering, 28(12), 2002.

A. Koru and H. Liu, Building Effective Defect-Prediction Models in
Practice, IEEE Software, 22(6), 23-29, 2005.

S. Kim, T. Zimmermann, E. Whitehead Jr., A. Zeller, Predicting Faults
from Cached History, Proc. ICSE 07, Minneapolis, USA, 2007

M. Li and Z.-H. Zhou. Improve computer-aided diagnosis with machine
learning techniques using undiagnosed samples. [EEE Trans. on
Systems, Man and Cybernetics - Part A: Systems and Humans, 2007,
37(6): 1088-1098. The Co-Forest tool is available at:
http://lamda.nju.edu.cn/datacode/CoForest.htm

T. Menzies, J. Greenwald and A. Frank, Data Mining Static Code
Attributes to Learn Defect Predictors, IEEE Trans. Software
Engineering, 32(11), pp. 1-12, 2007.

R. Moser, W. Pedrycz and G. Succi, A Comparative Analysis of the
Efficiency of Change Metrics and Static Code Attributes for Defect
Prediction, Proc. ICSE 2008, Leipzig, Germany, 2008.

N. Nagappan, T. Ball, and A. Zeller, Mining Metrics to Predict
Component Failures, Proc.ICSE 06, Shanghai, China, May 2006.

T. Ostrand, E. Weyuker and R. Bell, Predicting the Location and
Number of Faults in Large Software Systems, /IEEE Trans. Software
Engineering, 31 (4), pp. 340-355, 2005.

J. Rice, Mathematical Statistics and Data Analysis, second edition,
Duxbury Press, 1995.

T. Thelin, H. Petersson, P. Runeson, and C. Wohlin, Applying sampling
to improve software inspections. J. Systems and Software, 73(2), 2004.

WEKA: http://www.cs.waikato.ac.nz/ml/weka/

H. Zhang and X. Zhang, Comments on "Data Mining Static Code
Attributes to Learn Defect Predictors", IEEE Trans. on Software
Engineering, 33(9), pp. 635-636, 2007.

H. Zhang, On the Distribution of Software Faults, /[EEE Trans. on
Software Engineering, 34(2), pp. 301-302, 2008.

H. Zhang, X. Zhang and M. Gu, Predicting Defective Software
Components from Code Complexity Measures, Proc. 13th IEEE Pacific
Rim International Symposium on Dependable Computing (PRDC 2007),
Dec 2007, Melbourne, Australia.

H. Zhang, An Initial Study of the Growth of Eclipse Defects, Proc. 5th
Working Conference on Mining Sofiware Repositories (MSR 2008),
Leipzig, Germany, May 2008.

H. Zhang, An Investigation of the Relationships between Lines of Code
and Defects, Proc. ICSM’09, Edmonton, Canada, September 2009.

T. Zimmermann, R. Premraj and A. Zeller, 2007. Predicting Defects for
Eclipse, Proc. PROMISE 07, Minneapolis, USA.

T. Zimmermann and N. Nagappan, Predicting Defects using Network
Analysis on Dependency Graphs, Proc.ICSE 2008, Leipzig, Germany.

T. Zimmermann, N. Nagappan, H. Gall, E. Giger, B. Murphy. Cross-
project Defect Prediction: A Large Scale Experiment on Data vs.
Domain vs. Process, Proc. ESEC/FSE 2009, Amsterdam, Netherlands.

Z.-H. Zhou. When semi-supervised learning meets ensemble learning.
Proc.the 8th Int. Workshop on Multiple Classifier Systems (MCS'09),
Reykjavik, Iceland, 2009. (keynote)

