
Autom Softw Eng (2012) 19:201–230
DOI 10.1007/s10515-011-0092-1

Sample-based software defect prediction
with active and semi-supervised learning

Ming Li · Hongyu Zhang · Rongxin Wu ·
Zhi-Hua Zhou

Received: 16 December 2010 / Accepted: 27 June 2011 / Published online: 29 July 2011
© Springer Science+Business Media, LLC 2011

Abstract Software defect prediction can help us better understand and control soft-
ware quality. Current defect prediction techniques are mainly based on a sufficient
amount of historical project data. However, historical data is often not available for
new projects and for many organizations. In this case, effective defect prediction is
difficult to achieve. To address this problem, we propose sample-based methods for
software defect prediction. For a large software system, we can select and test a small
percentage of modules, and then build a defect prediction model to predict defect-
proneness of the rest of the modules. In this paper, we describe three methods for se-
lecting a sample: random sampling with conventional machine learners, random sam-
pling with a semi-supervised learner and active sampling with active semi-supervised
learner. To facilitate the active sampling, we propose a novel active semi-supervised
learning method ACoForest which is able to sample the modules that are most helpful
for learning a good prediction model. Our experiments on PROMISE datasets show
that the proposed methods are effective and have potential to be applied to industrial
practice.

M. Li · Z.-H. Zhou
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093,
China

M. Li
e-mail: lim@lamda.nju.edu.cn

Z.-H. Zhou
e-mail: zhouzh@lamda.nju.edu.cn

H. Zhang (�) · R. Wu
MOE Key Laboratory for Information System Security, Tsinghua University, Beijing 100084, China
e-mail: hongyu@tsinghua.edu.cn

R. Wu
e-mail: wrx09@mails.tsinghua.edu.cn

mailto:lim@lamda.nju.edu.cn
mailto:zhouzh@lamda.nju.edu.cn
mailto:hongyu@tsinghua.edu.cn
mailto:wrx09@mails.tsinghua.edu.cn


202 Autom Softw Eng (2012) 19:201–230

Keywords Software defect prediction · Sampling · Quality assurance · Machine
learning · Active semi-supervised learning

1 Introduction

Software quality assurance (SQA) is vital to the success of a software project. How-
ever, ensuring software quality is a resource and time-consuming activity, which
may include manual code inspections, technical review meetings and intensive soft-
ware testing. Recently, software defect prediction techniques have been proposed to
help allocate limited SQA resources in a cost-effective manner by predicting defect-
proneness of software modules. More resources and efforts could be spent on the
modules that are likely to be defective (contains at least one defect).

Many defect prediction methods have been proposed in recent years. For example,
Menzies et al. (2007) built defect prediction models based on 21 static code attributes.
Nagappan et al. (2006) proposed to extract principle components from metrics and
use these principles components for defect prediction. Kim et al. (2007) predicted de-
fects by caching locations that are adjusted by software change history data. Zimmer-
mann and Nagappan (2008) proposed models based on the structural measurement
of dependency graphs. In our previous work, we also found that simple complexity
metrics, such as Lines of Code, can be used to construct effective prediction models
(Zhang et al. 2007; Zhang 2009). These methods elaborate to extract features from
the defective and non-defective modules (e.g., files, methods or changes), apply ma-
chine learning or statistical methods to construct classification model, and then use
the model to predict defect-proneness of a new module.

The current defect prediction models are all built using historical data from past
projects, assuming that the new projects share the same product/process characteris-
tics and their defects can be predicted based on previous data. This assumption may
not be always valid. Firstly, historical data may not be available (and reliable) for
some organizations, especially for those do not have well-defined software process.
Secondly, even if some previous project data is available, whether it can construct
effective prediction models for completely new projects remains to be verified. This
is particularly of concern in a rapid changing environment, where the requirements,
development personnel, organizational structure, or even process changes.

To address this problem, in this paper, we propose a sampling-based approach to
software defect prediction. In our approach, we sample a small percentage of mod-
ules, examine the quality of sampled modules, construct a classification model based
on the sample and then use it predict the un-sampled modules in the project. In this
way, we can build a defect prediction model using data from the current project, in-
dependent from past projects.

A difficulty of the sampling approach is that, large software projects (e.g., Eclipse)
often consist of hundreds or even thousands of source code files. How to select a
sample and how to build an effective defect prediction models based on the sample
are major research challenges.

In our approach, we propose to use two semi-supervised machine learning meth-
ods called CoForest and ACoForest to construct defect prediction models based on



Autom Softw Eng (2012) 19:201–230 203

samples. CoForest (Li and Zhou 2007) is a disagreement-based semi-supervised
learning algorithm that exploits the advantage of both semi-supervised learning and
ensemble learning. It firstly learns an initial classifier from a small sample (labeled
data) and refines the classifier by further exploiting a larger number of unsampled
modules (unlabeled data). The ACoForest method extends CoForest by actively se-
lecting and labeling some previously unlabeled data for training the classifiers. Our
experiments on the public PROMISE datasets show that the prediction models con-
structed using CoForest and ACoForest can achieve better performance than those
using conventional machine learning techniques (such as Logistic Regression, Deci-
sion Tree and Naive Bayes). Our results also show that a small sample can achieve
similar performance as large samples do.

Unlike the previous studies, our approach does not require historical data. By ap-
plying our methods, a project team can randomly select a small sample of modules
(e.g., 10%) from the current project, test them for their defect-proneness, and build a
predictive model based on the sampled data in order to predict the defect proneness of
the rest of modules of the current project. Furthermore, ACoForest also supports the
adaptive selection of the modules—it can actively suggest the team which modules
to be chosen for testing in order to increase the prediction performance. We believe
our methods can be applied to open source and industrial projects to help improve
software quality assurance practices.

The organization of the paper is as follows. In Sect. 2, we describe the proposed
sample-based defect prediction approach. Section 3 describes our experimental de-
sign and results. We discuss the proposed approach in Sect. 4 and present the related
work in Sect. 5. Section 6 concludes the paper.

2 Sample-based defect prediction

In this section, we describe the proposed sample-based defect prediction approach.
Our approach can be classified into three methods—sampling with conventional ma-
chine learners, sampling with semi-supervised learning, and sampling with active
semi-supervised learning.

2.1 Sampling with conventional machine learners

Software defect prediction, which aims to predict whether a particular software mod-
ule contains any defects, can be cast into a classification problem in machine learning,
where software metrics are extracted from each software module to form an exam-
ple with manually assigned labels defective (having one or more defects) and non-
defective (no defects). A classifier is then learned from these training examples in
the purpose of predicting the defect-proneness of unknown software modules. In this
paper, we propose a sample-based defect prediction approach which does not rely
on the assumption that the current project has the same defect characteristics as the
historical projects.

Given a newly finished project, unlike the previous studies that leverage the mod-
ules in historical projects for classifier learning, sample-based defect prediction man-
ages to sample a small portion of modules for extensive testing in order to reliably la-
bel the sampled modules, while the defect-proneness of unsampled modules remains



204 Autom Softw Eng (2012) 19:201–230

unknown. Then, a classifier is constructed based on the sample of software modules
(the labeled data) and expected to provide accurate predictions for the unsampled
modules (unlabeled data). Here, conventional machine learners (e.g., Logistic Re-
gression, Decision Tree, Naive Bayes, etc.) can be applied to the classification.

In practice, modern software systems often consist of hundreds or even thousands
of modules. An organization is usually not able to afford extensive testing for all
modules especially when time and resources are limited. In this case, the organization
can only manage to sample a small percentage of modules, test them for defect-
proneness. Classifier would have to be learned from a small training set with the
defect-proneness labels. Thus, the key for the sample-based defect prediction to be
cost-effective is to learn a well-performing classifier while keeping the sample size
small.

2.2 Sampling with semi-supervised learning—the CoForest method

To improve the performance of sample-based defect prediction, we propose to ap-
ply semi-supervised learning for classifier construction, which firstly learns an initial
classifier from a small sample of labeled training set and refines it by further exploit-
ing a larger number of available unlabeled data.

In semi-supervised learning, an effective paradigm is known as disagreement-
based semi-supervised learning (Zhou and Li 2010), where multiple learners are
trained for the same task and the disagreements among the learners are exploited dur-
ing learning. In this paradigm, unlabeled data can be regarded as a special information
exchange “platform”. If one learner is much more confident on a disagreed unlabeled
example than other learner(s), then this learner will teach other(s) with this exam-
ple; if all learners are comparably confident on a disagreed unlabeled example, then
this example may be selected for query. Many well-known disagreement-based semi-
supervised learning methods (Blum and Mitchell 1998; Zhou and Li 2005, 2007; Li
and Zhou 2007) have been developed.

In this study, we apply CoForest (Li and Zhou 2007) for defect prediction. It
works based on a well-known ensemble learning algorithm named Random Forest
(Breiman 2001) to tackle the problems of determining the most confident examples
to label and producing the final hypothesis. The pseudo code of CoForest is presented
in Table 1. Briefly, it works as follows. Let L denote the labeled data set and U de-
note the unlabeled data set. First, N random trees are initiated from the training sets
bootstrap-sampled from the labeled data set L for creating a random forest. Then,
in each learning iteration, each random tree is refined with the original labeled ex-
amples L and the newly labeled examples L′ selected by its concomitant ensemble
(i.e., the ensemble of the other random trees except for the current tree). The learning
process iterates until certain stopping criterion is reached. Finally, the prediction is
made based on the majority voting from the ensemble of random trees. Note that in
this way, CoForest is able to exploit the advantage of both semi-supervised learning
and ensemble learning simultaneously, as suggested in Zhou (2009).

In CoForest, the stopping criterion is essential to guarantee a good performance.
Li and Zhou (2007) derived a stopping criterion based on the theoretical findings in
Angluin and Laird (1988). By enforcing the worst case generalization error of a ran-
dom tree in the current round to be less than that in the preceded round, they derived



Autom Softw Eng (2012) 19:201–230 205

Table 1 Pseudo code of CoForest (Li and Zhou 2007)

Algorithm: CoForest

Input:

the labeled set L, the unlabeled set U ,

the confident threshold θ , the number of random trees N ,

Process:

1. Construct a random forest with N random trees H = {h1, h2, . . . , hN }
2. Repeat 3∼9 until none of the random trees of H changes

3. Update the number of iteration, t (t = 1,2, . . .)

4. For each random tree hi in H , do step 5 ∼ 9

5. Construct concomitant ensemble H−i

6. Use H−i to label all the unlabeled data, and estimate the labeling confidence

7. Add the unlabeled data whose labeling confidences are above threshold θ to a newly

labeled set L′
t,i

8. Undersample L′
t,i

to make (1) holds. If it does not hold, skip step 9

9. Update hi by learning a random tree using L cup L′
t,i

Output:

H , whose prediction is generated by the majority voting from all the component trees

that semi-supervised learning process will be beneficial if the following condition is
satisfied

êi,t

êi,t−1
<

Wi,t−1

Wi,t

< 1 (1)

where êi,t and êi,t−1 denote the estimated classification error of the i-th random tree
in the t-th and (t − 1)-th round, respectively, and Wi,t and Wi,t−1 denote the total
weights of its newly labeled sets L′

i,t and Li,t−1 in the t-th and (t − 1)-th round,
respectively, and i ∈ {1,2, . . . ,N}. For detailed information on the derivation, please
refer to Li and Zhou (2007).

The CoForest has been successfully applied to the domain of computer-aided med-
ical diagnosis (Li and Zhou 2007), where conducting a large amount of routine ex-
aminations places heavy burden on medical experts. The CoForest algorithm was
applied to help learn hypothesis from diagnosed and undiagnosed samples in order to
assist the medical experts in making diagnosis.

2.3 Sampling with active semi-supervised learning—the ACoForest method

Although a random sample can be used to approximate the properties of all the soft-
ware modules in the current projects, a random sample is apparently not data-efficient
since random sample neglects the “needs” of the learners for achieving good perfor-
mance and hence may contain redundant information that the learner has already
captured during the learning process. Intuitively, if a learner is trained using the data
that the learner needs most for improving its performance, it may require less labeled
data than the learners trained without caring its needs for learning; put it another way,
if the same number of labeled data is used, the learner that is trained using the labeled



206 Autom Softw Eng (2012) 19:201–230

data it needs most would achieve better performance than the learner that is trained
without caring its needs for learning.

Active learning, which is another major approach for learning in presence of a
large number of unlabeled data, aims to achieve good performance by learning with
as few labeled data as possible. It assumes that the learner has some control over
the data sampling process by allowing the learner to actively select and query the
label of some informative unlabeled example which, if the labels are known, may
contribute the most for improving the prediction accuracy. Since active learning and
semi-supervised learning exploit the merit of unlabeled data from different perspec-
tive, they have been further combined to achieve better performance in image retrieval
(Zhou et al. 2006), Email spam detection (Xu et al. 2009), etc. Recently, Wang and
Zhou (2008) analytically showed that combining active learning and semi-supervised
learning is beneficial in exploiting unlabeled data.

In this study, we extend CoForest to incorporate the idea of active learning into the
sample-based defect prediction. We propose a novel active semi-supervised learning
method called ACoForest, which leverages the advantages from both disagreement-
based active learning and semi-supervised learning. In detail, let L and U denote
the labeled set and unlabeled set, respectively. Similar to CoForest, ACoForest is
firstly initiated by constructing a random forest with N random trees over L. Then,
ACoForest iteratively exploits the unlabeled data via both active learning and semi-
supervised learning. In each iteration, ACoForest firstly labels all the unlabeled ex-
amples and computes the degree of agreement of the ensemble on each unlabeled
example. Then, it reversely ranks all the unlabeled data according to the degree of
agreement, and selects the M top-most disagreed unlabeled data to query their labels
from the user. These unlabeled data as well as their corresponding labels are then
used to augment L. After that, ACoForest exploits the remaining unlabeled data just
as CoForest does. The pseudo-code of ACoForest is shown in Table 2.

3 Experiments

3.1 Experimental settings

To evaluate the effectiveness of sample-based defect prediction methods, we perform
experiments using datasets available at the PROMISE website.1 We have collected
the Eclipse, Lucene, and Xalan datasets.

The Eclipse datasets contain 198 attributes, including code complexity metrics
(such as LOC, cyclomatic complexity, number of classes, etc.) and metrics about
abstract syntax trees (such as number of blocks, number of if statements, method
references, etc.) (Zimmermann et al. 2007). The Eclipse defect data was collected
by mining Eclipse’s bug databases and version archives (Zimmermann et al. 2007).
In this study, we experiment with Eclipse 2.0 and 3.0. To show the generality of
the results, we use the package-level data for Eclipse 3.0 and the file-level data for
Eclipse 2.0. We also choose two Eclipse components: JDT.Core and SWT in Eclipse

1http://promisedata.org/.

http://promisedata.org/


Autom Softw Eng (2012) 19:201–230 207

Table 2 Pseudo code of ACoForest

Algorithm: ACoForest

Input:

the labeled set L, the unlabeled set U ,

the confident threshold θ , the number of random trees N ,

the number of examples to query in each iteration M

Process:

1. Construct a random forest with N random trees H = {h1, h2, . . . , hN }
2. Repeat 3∼11 until none of the random trees of H changes

3. Update the number of iteration, t (t = 1,2, . . .)

4. Find M unlabeled examples in U , on whose labeled the random trees in H disagree

the most.

5. Query the labels of the selected M unlabeled examples, and places them along with

the labels into L.

6. For each random tree hi in H , do step 7 ∼ 11

7. Construct concomitant ensemble H−i

8. Use H−i to label all the unlabeled data, and estimate the labeling confidence

9. Add the unlabeled data whose labeling confidences are above threshold θ to a newly

labeled set L′
t,i

10. Undersample L′
t,i

to make (1) holds. If it does not hold, skip step 11

11. Update hi by learning a random tree using L cup L′
t,i

Output:

H , whose prediction is generated by the majority voting from all the component trees

Table 3 The summary of the datasets

Data sets #attributes LOC #instances #defective modules

Eclipse 3.0 (package) 198 1306K 661 415 (62.78%)

Eclipse 2.0 198 797K 6729 2611 (38.80%)

JDT.Core 198 181K 939 502 (53.46%)

SWT 198 194K 843 208 (24.67%)

Lucene 20 103K 340 203 (59.71%)

Xalan 20 57K 886 411 (46.44%)

3.0 to evaluate the defect prediction performance for smaller Eclipse projects. We
only examine the pre-release defects, which are defects reported in the last six months
before release. The data are summarized in Table 3.

The Lucene dataset we use contains metric and defect data for 340 source files
in Apache Lucene v2.4. The Xalan dataset contains metric and defect data for 229
source files in Apache Xalan v2.6. Both datasets contains 20 attributes, including
code complexity metrics (e.g., Average Cyclomatic Complexity), object-oriented met-
rics (e.g., Depth of Inheitence Tree) and program dependency metrics (e.g., Number
of Dependent Classes). The data are also summarized in Table 3.



208 Autom Softw Eng (2012) 19:201–230

Having collected the data, we then apply the three methods described in Sect. 2
to construct defect prediction models from a small sample of modules and use them
to predict defect-proneness of unsampled modules. We evaluate the performance of
all the methods in terms of precision (P ), recall (R), F-measure (F ) and Balance-
measure (B) (Menzies et al. 2007), which are defined as follows.

P = tp

tp + fp
(2)

R = tp

tp + fn
(3)

F = 2PR

P + R
(4)

B = 1 −
√
√
√
√

1

2

(
(

fn

tp + fn

)2

+
(

fp

tn + fp

)2
)

(5)

where tp, fp, tn, fn are the number of defective modules that are predicted as defec-
tive, the number non-defective modules that are predicted as defective, the number
non-defective modules that are predicted as non-defective, and the number defective
module that are predicted as non-defective, respectively.

3.2 Method 1: Sampling with conventional learners

We first perform experiments to evaluate the effectiveness of the defect predic-
tion models constructed using randomly selected samples and conventional machine
learners. For each data set, we randomly sample a small portion of modules as the la-
beled training set according to a sampling rate (μ), while the remaining examples are
used as the unlabeled and test sets. For example, given a project with 1000 modules,
a random sample based on a sampling rate of 5% results in a set with 50 labeled mod-
ules and a set with 950 modules without labels. Since it is usually difficult to conduct
costly extensive testing for many modules of a large projects (e.g., 50% modules)
in practice and the key of sample-based approach is to achieve good performance
while keeping the cost of extensive testing low, the sampling intensity should not be
large. Here, we use ten different sampling rates {5%,10%,15%, . . . ,50%}, in order
to simulate different level of sampling intensity. The labeled data set is used to initiate
the machine learners. We repeat the sampling process for 100 times, and the average
performance of the compared methods is reported.

In this experiment, we adopt three widely-used machine learners, namely Logis-
tic Regression, Naive Bayes, and Decision Tree. We compare the performance of all
the methods in terms of precision, recall, F-measure and Balance-measure. The de-
tailed comparisons in terms of precision, recall, F-measure and Balance-measure of
the compared methods for the entire 60 experimental settings (i.e., 6 data sets × 10
sampling rates) are given in Tables 8 to 13 in the Appendix.

The results show that for all classifiers, increasing sample sizes does not signifi-
cantly improve prediction results. For example, for JDT.Core, increasing sample size



Autom Softw Eng (2012) 19:201–230 209

Fig. 1 The box-polts of the F-measures obtained from 100 trails with sampling rate μ = 10% using
Decision Tree

Fig. 2 The box-polts of the F-measures obtained from 100 trails with sampling rate μ = 10% using
Logistic Regression

from 5% to 50% only increases the F-measure by 0.09 (from 0.63 to 0.72) using Lo-
gistic Regression, by 0.04 using Decision Tree (from 0.69 to 0.73). For Naive Bayes,
the F-measure even decreases from 0.70 to 0.62 when sample size is increased.

Figures 1, 2 and 3 show the box-plots for the F-measures obtained from 100 trails
with sampling rate μ = 10% using the three classifiers. For all projects, the interquar-
tiles (ranges between upper quartile and lower quartile, i.e., the ranges between the
75th percentile point and the 25th percentile point) are all narrow (less than 0.1). The
ranges between upper tails and lower tails of the box-plots are less than 0.25. There
are only a few data points fall below the lower tail.



210 Autom Softw Eng (2012) 19:201–230

Fig. 3 The box-polts of the F-measures obtained from 100 trails with sampling rate μ = 10% using Naive
Bayes

In summary, our results suggest that a smaller sample can achieve similar defect
prediction performance as larger samples do. Building a defect prediction model with
a small sample does not necessarily lead to significant performance improvement.
However, the savings of cost resulted from data reduction is significant.

3.3 Method 2: Sampling with CoForest

We also perform experiments to evaluate the effectiveness of the defect prediction
models constructed using random sampling and semi-supervised learning. Following
the same experimental setting described in the previous section, for each data set, we
use ten different sampling rates {5%,10%,15%, . . . ,50%}. The labeled data set is
used to initiate CoForest and the unlabeled data is leveraged for classifier refinement.
For each of the 60 experimental settings (6 data sets × 10 sampling rates), we repeat
the sampling process for 100 times and the average results are reported in Tables 8
to 13 in the Appendix. We also plot the performance of CoForest and the compared
methods versus the sampling rate μ in Fig. 4.

We conduct Mann-Whitney U -test on each setting, and summarize the results in
Table 4, where each table element (i, j) denote the “win/tie/loss” (win: the number
of times that the i-th method performs significantly better than the j -th method; tie:
the number of times that the performances of the i-th method the j -th method have
no significantly difference; loss: the number of times that the i-th method performs
significantly worse than the j -th method). We conduct sign test (Gibbons 1985) over
the “win/tie/loss” values. The element (i, j) is boldfaced if the sign test over the cor-
responding “win/tie/loss” values suggests the i-th method is significantly better than
the j -th method. The results show that CoForest is significantly better than the three
conventional machine learning methods. Among the 60 different experimental set-
tings, CoForest significantly outperforms Logistic Regression on 55 settings, Naive
Bayes on 49 settings and Decision Tree on 59 settings.



Autom Softw Eng (2012) 19:201–230 211

Fig. 4 The F-measures of the CoForest and the compared methods at different sampling rates

Table 4 The summary of
Mann-Whitney U -test of
compared methods over 60
different experimental settings
(6 data sets × 10 sampling rates)

Logistic Naive Bayes Decision Tree

Regression

Logistic – – –

Regression

Naive Bayes 16/2/42 – –

Decision Tree 38/7/15 46/4/10 –

CoForest 55/5/0 49/3/8 59/1/0

For better illustration, in Table 5, we summarize the performance in terms of
F-measure and Balance-measure of CoForest as well as the three conventional ma-
chine learning methods over all the data set when only 10% modules are sampled,
where the best performance in terms of F-measure and Balance-measure on each data
set is boldfaced. It can be easily observed from the table that CoForest achieves the



212 Autom Softw Eng (2012) 19:201–230

Table 5 Performance of CoForest and the compared methods in predicting defects when only 10% mod-
ules are sampled

Dataset CoForest Logistic Regression Naive Bayes Decision Tree

F B F B F B F B

JDT.Core .730 .704 .630 .613 .680 .686 .700 .685

SWT .570 .674 .450 .600 .640 .759 .540 .648

ECLIPSE 2.0 .570 .639 .530 .606 .440 .523 .520 .595

ECLIPSE 3.0 .740 .591 .660 .568 .620 .615 .700 .590

XALAN .600 .644 .570 .624 .550 .599 .580 .628

LUCENE .690 .582 .650 .587 .640 .634 .670 .586

Avg. .650 .639 .582 .600 .595 .636 .618 .622

Fig. 5 The box-polts of the F-measures obtained from 100 trails with sampling rate μ = 10% using
CoForest

best performance among the compared methods except that on SWT NaiveBayes per-
forms the best. On average, CoForest also achieves the best average performance. For
example, the average F-measure of CoForest is 0.650, which improves the average
F-measure of Logistic Regression (0.582) by 12.1%, Naive Bayes (0.595) by 9.2%,
Decision Tree (0.618) by 5.2%. Similar trends are also observed in terms of Balance-
measure. These improvements are achieved because CoForest is able to utilize the
extra unlabeled data to improve prediction performance while the conventional ma-
chine learning methods cannot.

It can be observed from Fig. 4 that for CoForest increasing sample size may only
result in marginal performance improvement. For example, for JDT.Core when in-
creasing sample size from 5% to 20%, the F-measure is only improved by 2%. When
the sample size is further increased to 50%, the F-measure is essentially not changed.

Figure 5 shows the box-plots for the F-measures obtained from 100 trails with
sampling rate μ = 10% using CoForest. For all projects, the interquartiles are all



Autom Softw Eng (2012) 19:201–230 213

narrow (less than 0.07). The ranges between upper tails and lower tails of the box-
plots are also narrow (less than 0.20). There are only a few data points fall below the
lower tail. These results show that for large samples, the CoForest learner can achieve
good defect prediction accuracy with high confidence. For the SWT project, the vari-
ations among different trails are larger (as reflected by the wider ranges in box-plots).
However, the lower quartile is 0.54, therefore among the 100 trails, 75 trails have
F-measures higher than 0.54.

In summary, our results confirm that the proposed semi-supervised learner Co-
Forest can improve the performance of the sample-based defect prediction with high
confidence.

3.4 Method 3: Sampling with ACoForest

Following the same experimental design described in the previous two sections, we
also evaluate the sample-based defect prediction method with active learning tech-
niques. We use ACoForest to learn a classifier for defect prediction. We use ten dif-
ferent sampling rates {5%,10%,15%, . . . ,50%} to generate initial labeled training
data. The average precision, recall, F-measure and Balance-measure at different sam-
pling rates are tabulated in Table 14 to 19 in the Appendix. Note that, since ACoFor-
est can actively select a number of informative unlabeled data for extensive software
testing, it actually uses more labeled data than the original sample during learning
process. To achieve fair comparisons, for other methods which cannot actively select
modules for extensive testing, we feed them with the same number of labeled data
(i.e., the number of initially sampled plus the number of actively queried) used for
training ACoForest. To explicitly show how many labeled data are used during the
training process, we tabulated the average percentage of labeled data in the braces
w.r.t. the corresponding sampling rate. Note that the only difference of the labeled
data used by ACoForest and other methods is that besides the initially sampled mod-
ules, ACoForest actively select some informative modules for extensive testing while
other methods randomly select the same number of modules for testing. Similarly, we
plot the performance of ACoForest and the compared methods versus the sampling
rate μ in Fig. 6 for better illustration.

We also conduct Mann-Whitney U -test on each setting, and summarize the results
in Table 6, where each table element (i, j) denotes the number of “win/tie/loss”.
We conduct sign test (Gibbons 1985) over the “win/tie/loss” values. The element
(i, j) is boldfaced if the sign test over the corresponding “win/tie/loss” values sug-
gests the i-th method is significantly better than the j -th method. The results show
that ACoForest is significantly better than the three conventional machine learning
methods. Among the 60 different experimental settings (6 data sets × 10 sampling
rates), ACoForest significantly outperforms Logistic Regression on all 60 settings,
Naive Bayes on 59 settings and Decision Tree on 60 settings. Compared to CoForest,
ACoForest achieves significantly better performance on 52 settings, and comparable
performance on 7 settings, and significantly worse performance on only 1 setting.

Table 7 further summarizes the performance in terms of F-measure and Balance-
measure of ACoForest, CoForest and three conventional machine learning methods
over all the data set when only 10% modules are initially sampled. The best perfor-
mance in terms of F-measure and Balance-measure on each data set is boldfaced.



214 Autom Softw Eng (2012) 19:201–230

Fig. 6 The F-measures of the ACoForest and the compared methods at different sampling rates

Table 6 The summary of Mann-Whitney U -test of compared methods over 60 experimental settings
(6 data sets × 10 sampling rates)

Logistic Regression Naive Bayes Decision Tree CoForest

Logistic Regression – – – –

Naive Bayes 12/1/47 – – –

Decision Tree 37/5/18 50/0/10 – –

CoForest 50/10/0 50/4/6 56/4/0 –

ACoForest 60/0/0 59/1/0 60/0/0 52/7/1

It can be easily observed from the table that ACoForest almost always achieves the
best performance among the compared methods except that on ECLIPSE 2.0 Co-
Forest performs the best in terms of F-measure. ACoForest also achieves the best
average performance. For example, the average F-measure of ACoForest is 0.685,
which improves the average F-measure of CoForest (0.664) by 3.2%, Logistic Re-
gression (0.597) by 14.7%, Naive Bayes (0.595) by 19.1%, Decision Tree (0.628) by



Autom Softw Eng (2012) 19:201–230 215

Table 7 Performance of ACoForest and the compared methods in predicting defects when only 10%
modules are initially sampled

Dataset ACoForest CoForest Logistic Naive Decision

Regression Bayes Tree

F B F B F B F B F B

JDT.Core .760 .744 .743 .717 .650 .631 .660 .670 .710 .690

SWT .640 .717 .591 .687 .460 .607 .630 .741 .560 .653

ECLIPSE 2.0 .570 .641 .572 .639 .540 .608 .440 .522 .520 .596

ECLIPSE 3.0 .770 .624 .756 .598 .660 .572 .590 .596 .710 .597

XALAN .640 .679 .614 .658 .580 .635 .550 .591 .590 .644

LUCENE .730 .633 .706 .606 .690 .633 .580 .603 .680 .602

Avg. .685 .673 .664 .651 .597 .614 .575 .620 .628 .630

Fig. 7 The box-polts of the F-measures obtained from 100 trails with sampling rate μ = 10% using
ACoForest

9.1%. Similar trends are also observed in terms of Balance-measure. The superior-
ity of ACoForest over CoForest and larger improvement of ACoForest than that of
CoForst over conventional machine learning methods suggest that besides exploiting
extra unlabeled data, actively sampling modules for testing according to the learner’s
needs can further improve the prediction performance.

Figure 7 shows the box-plots for the F-measures obtained from 100 trails with
sampling rate μ = 10% using ACoForest. For all projects, the interquartiles are all
narrow (less than 0.08). The ranges between upper tails and lower tails of the box-
plots are less than 0.20. There are only a few data points fall below the lower tail.

In summary, our results confirm that the proposed active semi-supervised learn-
ing method ACoForest can achieve better defect prediction performance with high
confidence.



216 Autom Softw Eng (2012) 19:201–230

4 Discussions

4.1 Applying the proposed methods

Our experiments show that a smaller sample can achieve similar defect prediction
performance as larger samples do. The sample can serve as an initial labeled training
set that represent the underlying data distribution of the entire dataset. Thus if there is
no sufficient historical datasets for building an effective defect prediction model for
a new project, we can randomly sample a small percentage of modules to test, obtain
their defect status (defective or non-defective), and then use the collected sample to
build a defect prediction for this project.

Our experiments also show that in general, sampling with semi-supervised learn-
ing and active learning can achieve better prediction performance than sampling with
conventional machine learning techniques. A sample may contain much information
that a conventional machine learner has already learned well but may contain little
information that the learner needs for improving the current prediction accuracy. The
proposed CoForest and ACoForest learners take the needs for learning into account
and obtain information needed for improving performance from the un-sampled mod-
ules.

Both CoForest and ACoForest methods work well for sample-based defect pre-
diction. ACoForest also supports the active selection of the modules—it can actively
suggest the QA team which modules to be chosen in order to increase the prediction
performance. Thus in order to apply ACoForest, interactions with test engineers are
required. If such interactions is allowed (which implies that more time and efforts are
allowed), we can apply the ACoForest method. If such interaction is not allowed due
to limited time and resources, we can apply the CoForest method.

4.2 Threats to validity

In our approach, we draw a random sample from the population of modules. To en-
sure proper statistical inference and to ensure the cost-effectiveness of the proposed
method, the population size should be large enough. Therefore, the proposed method
is suitable for large-scale software systems.

The simple random sampling method requires that each individual in a sample
to be collected entirely by chance with the same probability. Selection bias may be
introduced if the module sample is collected simply by convenience, or from a single
developer/team. The selection bias can lead to non-sampling errors (errors caused by
human rather than sampling) and should be avoided.

The defect data for a sample can be collected through quality assurance activities
such as software testing, static program checking and code inspection. As the sample
will be used for prediction, these activities should be carefully carried out so that most
of defects can be discovered. Incorrect sample data may lead to incorrect estimates
of the population.

In our experiments, we used the public defect dataset available at the PROMISE
dataset. Although this dataset has been used by many other studies (Koru and Liu
2005; Menzies et al. 2007; Zhang et al. 2010; Zimmermann et al. 2007, 2009), our



Autom Softw Eng (2012) 19:201–230 217

results may be under threat if the dataset is seriously flawed (e.g., there were major
problems in bug data collection and recording). Also, all the data used are collected
from open source projects. It is desirable to replicate the experiments on industrial, in-
house developed projects to further evaluate their validity. This will be our important
future work.

5 Related work

5.1 Software defect prediction

The ability to predict software quality is important for software quality improvement
and project management. Over the years, many prediction models have been proposed
to predict defect-proneness of software modules (Menzies et al. 2007; Zhang 2009;
Zhang and Wu 2010; Zimmermann et al. 2007, 2009). For example, Menzies et al.
(2007) performed defect predictions for five NASA projects using static code metrics.
In their work, probability of detection (recall) and probability of false alarm (pf) are
used to measure the accuracy of a defect prediction model. Their models generate the
average results of recall = 71% and pf = 25%, using a Naive Bayes classifier. Zhang
and Zhang (2007) pointed out that Menzies et al.’s results were not satisfactory when
precision was considered. They found that high recall and low pf do not necessarily
lead to high precision. Kim et al. (2007) predicted defects by caching locations that
were adjusted by software change history data. Their method could predict 73%–
95% faults based on 10% files. Zimmermann and Nagappan (2008) proposed models
based on the structural measurement of dependency graphs. Hassan (2009) found
that the more complex the changes to a file, the higher the chance the file would
contain faults. Lessmann et al. (2008) reported an extensive study on the statistical
differences between 19 data miners commonly used for defect prediction and they
found that the learners’ performance was remarkably similar. In our prior work, we
also proposed code complexity-based defect-prediction models (Zhang et al. 2007;
Zhang 2009). Recently, Jiang et al. (2011) proposed ROCUS algorithm that is able
to exploit unlabeled data when the distribution is imbalanced. They also applied it to
defect prediction.

If no good historical data is available, can we use data from other projects or even
other companies to build effective prediction models? Recently Zimmermann et al.
(2009) ran 622 cross-project predictions for 12 real-world applications, their results
show that cross-project prediction is a serious challenge, i.e., simply using models
from projects in the same domain or with the same process does not lead to accurate
predictions. Turhan et al. (2009) also investigated the applicability of cross-company
(CC) data for building localized defect predictors. They used data from NASA to
predict defect-proneness of modules developed by a Turkish software company. They
applied nearest neighbor (NN) filtering method to CC data, and observed that defect
predictors learned from WC (within-company) data outperform the ones learned from
CC data. They also found the CC predictions resulted in increased number of false
alarms. All these results show that data from other projects or companies cannot
be easily used for local projects without advanced research. Therefore, if no good



218 Autom Softw Eng (2012) 19:201–230

historical data is available, effective defect prediction would be difficult. In this paper,
we propose sample-based defect prediction methods to address the problem. Our idea
of building sample-based defect prediction models was initially presented in Zhang
and Wu (2010).

In this study we show that a small sample from a local project can build cost-
effective defect prediction models. Compared to the related work, our method has the
following advantages:

– Does not require historical or other projects’ data
– Requires only a small sample of modules
– Can achieved improved prediction performance by learning from unsampled mod-

ules.

The proposed sample-based defect prediction approach is independent of the at-
tributes used for model construction. In this study, we only use static code attributes to
build the model. As suggested in Hassan (2009), Zimmermann and Nagappan (2008),
using more types of attributes, such as changes and dependency metrics, could im-
prove the accuracy of the prediction. We will investigate more types of attributes in
our future work.

5.2 Semi-supervised learning and active learning

In many practical applications, many unlabeled data can be easily collected, while
only a few labeled data can be obtained since much human effort and expertise is
required for labeling. Thus, methods have been developed for exploiting the available
unlabeled data for performance improvement. Semi-supervised learning and active
learning are two major techniques.

Semi-supervised learning (Chapelle et al. 2006; Zhu 2006) aims to construct a
learner that automatically exploits the large amount of unlabeled data in addition to
the labeled data in order to help improve the learning performance. Semi-supervised
learning methods are usually divided into generative-model based methods (Miller
and Uyar 1997; Nigam et al. 2000; Shahshahani and Landgrebe 1994), low density
separation based methods (Chapelle and Zien 2005; Grandvalet and Bengio 2005;
Joachims 1999), graph-based methods (Belkin et al. 2006; Zhou et al. 2004; Zhu et
al. 2003), and disagreement-based methods (Zhou and Li 2010).

Disagreement-based semi-supervised learning, which uses multiple learners and
exploits the disagreements among the learners during the learning process, orig-
inates from co-training proposed by Blum and Mitchell (1998), where classifiers
learned from two sufficient and redundant views teach each other using some con-
fidently predicted unlabeled examples. Later, Goldman and Zhou (2000) proposed an
extension of co-training which does not require two views but two different spe-
cial learning algorithms. Zhou and Li (2005) proposed to use three classifiers to
exploit unlabeled data, where an unlabeled example is labeled and used to teach
one classifier if the other two classifiers agree on its labeling. Later, Li and Zhou
(2007) further extended the idea in Zhou and Li (2005) by collaborating more classi-
fiers in training process. Besides classification, Zhou and Li (2007) also adapted the
disagreement-based paradigm to semi-supervised regression. Disagreement-based



Autom Softw Eng (2012) 19:201–230 219

semi-supervised learning paradigm has been widely applied to natural language pro-
cessing (e.g., Steedman et al. 2003), information retrieval (e.g., Zhou et al. 2006;
Li et al. 2009), computer-aided diagnosis (e.g., Li and Zhou 2007), etc.

Active learning deals with methods that assume the learner has some control over
the input space. In exploiting unlabeled data, it can query the ground-truth labels of
specific examples from an oracle (e.g., a human expert). Here the key is to select
appropriate unlabeled examples for query such that the learning performance can be
improved with a minimum number of queries. There are two major schemes, i.e.
uncertainty sampling and committee-based sampling. Approaches of the former train
a single learner and then query the unlabeled examples on which the learner is least
confident (Lewis and Catlett 1994; Lewis and Gale 1994; Tong and Koller 2000;
Balcan et al. 2007); while approaches of the latter generate a committee of multiple
learners and select the unlabeled examples on which the committee members disagree
the most (Seung et al. 1992; Dagan and Engelson 1994; Freund et al. 1997).

Since semi-supervised learning and active learning exploit the unlabeled data in
different way, they are further combined to achieve better performance (Muslea et al.
2002; Zhou et al. 2006; Xu et al. 2009). Recently, Wang and Zhou (2008) analytically
showed that the sample complexity can be exponentially reduced if multi-view active
learning and semi-supervised learning are combined.

6 Conclusion

Current techniques for estimating quality, especially for defect prediction, are mainly
based on a sufficient amount of historical project data. However, if no historical data
is available, effective defect prediction would be difficult. In this paper, we propose
to use a small sample of modules to construct cost-effective defect prediction models
for large scale systems. We apply a semi-supervised learning method called CoForest
to build a classification model based on a sample and the remaining un-sampled mod-
ules. Such a model is then used to predict defect-proneness of an un-sampled module
in the project. We also propose a novel active semi-supervised learning method called
ACoForest, which can actively select several informative un-sampled modules for
testing while automatically exploiting the remaining un-sampled modules for better
performance. Our experimental results on PROMISE datasets show that the proposed
methods can achieve better performance than conventional machine learners, after ex-
ploiting the un-sampled modules. We also notice that sample size does not affect the
prediction results significantly.

In the future, we plan to continue to apply our sample-based quality estimation
methods to industrial practices and evaluate their effectiveness. We will also develop
an integrated environment that can automate the entire defect prediction process.

Acknowledgements This research is supported by National Science Foundation of China (60903103,
61073006, 61021062) and the Tsinghua University research project 2010THZ0. The authors would like to
thank anonymous reviewers for their suggestions and Wei-Wei Tu for proof-reading.



220 Autom Softw Eng (2012) 19:201–230

Appendix

Table 8 Performance of CoForest and the compared methods in predicting defects on JDT.Core

μ CoForest Logistic Regression Naive Bayes Decision Tree

R P F B R P F B R P F B R P F B

5% .745 .701 .720 .678 .630 .635 .630 .603 .679 .730 .700 .692 .701 .696 .690 .665

10% .743 .727 .730 .704 .623 .648 .630 .613 .608 .774 .680 .686 .696 .717 .700 .685

15% .735 .742 .740 .715 .621 .660 .640 .623 .583 .789 .670 .677 .699 .715 .700 .684

20% .747 .741 .740 .718 .637 .673 .650 .636 .563 .809 .660 .672 .714 .717 .710 .689

25% .743 .749 .740 .723 .644 .682 .660 .644 .541 .820 .650 .660 .708 .729 .720 .697

30% .751 .751 .750 .726 .665 .690 .680 .655 .527 .822 .640 .652 .722 .727 .720 .698

35% .749 .750 .750 .726 .683 .695 .690 .664 .514 .830 .630 .645 .716 .724 .720 .695

40% .748 .756 .750 .730 .687 .706 .700 .673 .506 .836 .630 .641 .719 .732 .720 .702

45% .752 .751 .750 .728 .703 .709 .700 .681 .504 .838 .630 .640 .727 .728 .730 .703

50% .752 .750 .750 .727 .715 .719 .720 .693 .497 .844 .620 .636 .726 .730 .730 .704

∗Mann-Whitney U -test shows that CoForest performs better than other methods, at significant level 0.05

Table 9 Performance of CoForest and the compared methods in predicting defects on SWT

μ CoForest Logistic Regression Naive Bayes Decision Tree

R P F B R P F B R P F B R P F B

5% .525 .602 .550 .655 .447 .452 .440 .590 .720 .565 .630 .767 .527 .582 .540 .654

10% .555 .612 .570 .674 .471 .444 .450 .600 .696 .595 .640 .759 .518 .590 .540 .648

15% .572 .626 .590 .687 .482 .451 .460 .608 .690 .606 .640 .755 .535 .607 .560 .660

20% .584 .634 .600 .694 .489 .479 .480 .612 .667 .617 .640 .740 .546 .621 .580 .668

25% .588 .639 .610 .697 .512 .496 .500 .628 .666 .620 .640 .743 .540 .629 .580 .665

30% .593 .645 .610 .700 .518 .507 .510 .635 .644 .625 .630 .728 .546 .647 .590 .669

35% .598 .654 .620 .703 .539 .527 .530 .651 .651 .632 .640 .732 .557 .645 .600 .676

40% .606 .654 .630 .709 .554 .533 .540 .659 .644 .626 .630 .729 .569 .642 .600 .684

45% .594 .655 .620 .699 .560 .554 .560 .663 .632 .632 .630 .720 .551 .652 .600 .671

50% .610 .651 .630 .711 .577 .550 .560 .676 .640 .627 .630 .726 .569 .654 .610 .685

∗Mann-Whitney U -test shows that CoForest performs better than other methods (except for Naive Bayes),
at significant level 0.05



Autom Softw Eng (2012) 19:201–230 221

Table 10 Performance of CoForest and the compared methods in predicting defects on ECLIPSE 2.0

μ CoForest Logistic Regression Naive Bayes Decision Tree

R P F B R P F B R P F B R P F B

5% .553 .556 .550 .624 .504 .491 .500 .576 .362 .604 .450 .536 .485 .525 .500 .583

10% .579 .569 .570 .639 .504 .567 .530 .606 .340 .619 .440 .523 .509 .532 .520 .595

15% .576 .587 .580 .644 .496 .602 .540 .612 .315 .628 .420 .508 .515 .544 .530 .601

20% .579 .595 .590 .648 .496 .620 .550 .615 .310 .631 .420 .505 .522 .550 .540 .606

25% .585 .598 .590 .651 .496 .633 .560 .618 .305 .636 .410 .501 .522 .554 .540 .606

30% .583 .606 .590 .653 .495 .637 .560 .618 .297 .638 .410 .496 .533 .562 .550 .614

35% .578 .615 .590 .653 .495 .645 .560 .619 .293 .643 .400 .494 .536 .568 .550 .617

40% .587 .615 .600 .657 .500 .649 .560 .623 .296 .643 .410 .496 .543 .569 .560 .620

45% .578 .620 .600 .655 .502 .651 .570 .624 .295 .643 .400 .495 .546 .573 .560 .622

50% .573 .626 .600 .654 .502 .655 .570 .625 .292 .642 .400 .493 .547 .577 .560 .624

∗Mann-Whitney U -test shows that CoForest performs better than other methods, at significant level 0.05

Table 11 Performance of CoForest and the compared methods in predicting defects on ECLIPSE 3.0 -
PACKAGE

μ CoForest Logistic Regression Naive Bayes Decision Tree

R P F B R P F B R P F B R P F B

5% .761 .695 .720 .559 .658 .680 .660 .556 .624 .733 .670 .614 .672 .686 .670 .562

10% .776 .712 .740 .591 .646 .687 .660 .568 .529 .769 .620 .615 .696 .705 .700 .590

15% .794 .720 .750 .599 .632 .685 .660 .566 .479 .788 .590 .600 .697 .707 .700 .593

20% .806 .722 .760 .602 .647 .691 .670 .574 .454 .801 .580 .590 .697 .710 .700 .596

25% .806 .727 .760 .611 .651 .703 .670 .589 .431 .805 .560 .578 .707 .715 .710 .604

30% .805 .731 .770 .620 .665 .710 .690 .599 .414 .814 .550 .570 .708 .715 .710 .604

35% .818 .732 .770 .618 .662 .713 .690 .601 .411 .819 .550 .569 .721 .720 .720 .610

40% .804 .732 .760 .627 .679 .713 .690 .607 .403 .817 .540 .564 .725 .714 .720 .607

45% .808 .734 .770 .631 .686 .719 .700 .615 .394 .825 .530 .560 .722 .721 .720 .618

50% .808 .735 .770 .631 .683 .723 .700 .618 .382 .824 .520 .552 .731 .722 .730 .618

∗Mann-Whitney U -test shows that CoForest performs better than other methods, at significant level 0.05



222 Autom Softw Eng (2012) 19:201–230

Table 12 Performance of CoForest and the compared methods in predicting defects on XALAN

μ CoForest Logistic Regression Naive Bayes Decision Tree

R P F B R P F B R P F B R P F B

5% .617 .610 .600 .642 .561 .554 .550 .594 .501 .730 .590 .630 .575 .600 .580 .622

10% .592 .618 .600 .644 .548 .610 .570 .624 .447 .740 .550 .599 .559 .618 .580 .628

15% .590 .623 .600 .649 .531 .630 .570 .626 .425 .748 .540 .585 .557 .616 .580 .631

20% .593 .631 .610 .652 .515 .645 .570 .622 .411 .757 .530 .577 .558 .632 .590 .637

25% .591 .628 .610 .651 .515 .640 .570 .621 .405 .748 .520 .572 .557 .632 .590 .638

30% .603 .630 .610 .656 .519 .656 .580 .627 .409 .756 .530 .576 .578 .629 .600 .644

35% .593 .638 .610 .655 .519 .656 .580 .627 .399 .757 .520 .569 .561 .639 .590 .640

40% .599 .638 .620 .658 .513 .669 .580 .627 .395 .766 .520 .567 .576 .646 .600 .650

45% .606 .635 .620 .659 .512 .673 .580 .627 .393 .762 .520 .565 .578 .641 .600 .649

50% .605 .638 .620 .660 .505 .666 .570 .621 .386 .774 .510 .561 .588 .641 .610 .653

∗Mann-Whitney U -test shows that CoForest performs better than other methods, at significant level 0.05

Table 13 Performance of CoForest and the compared methods in predicting defects on LUCENE

μ CoForest Logistic Regression Naive Bayes Decision Tree

R P F B R P F B R P F B R P F B

5% .682 .675 .670 .579 .616 .673 .630 .578 .641 .712 .660 .615 .644 .666 .640 .568

10% .718 .675 .690 .582 .627 .675 .650 .587 .555 .764 .640 .634 .666 .677 .670 .586

15% .731 .689 .700 .601 .663 .686 .670 .603 .512 .793 .620 .627 .679 .682 .670 .593

20% .729 .688 .700 .605 .680 .702 .690 .623 .481 .803 .590 .611 .677 .690 .680 .605

25% .754 .694 .720 .616 .704 .710 .700 .637 .478 .810 .590 .612 .703 .690 .690 .610

30% .743 .697 .720 .621 .710 .722 .710 .651 .450 .822 .580 .598 .683 .697 .690 .620

35% .756 .705 .730 .628 .713 .728 .720 .656 .445 .831 .570 .596 .705 .700 .700 .622

40% .744 .701 .720 .628 .721 .727 .720 .659 .438 .826 .570 .591 .706 .701 .700 .628

45% .739 .707 .720 .633 .720 .735 .730 .666 .422 .835 .560 .582 .691 .707 .700 .630

50% .744 .715 .730 .642 .716 .740 .730 .671 .422 .842 .560 .583 .697 .713 .700 .638

∗Mann-Whitney U -test shows that CoForest performs better than other methods, at significant level 0.05



Autom Softw Eng (2012) 19:201–230 223

Ta
bl

e
14

Pe
rf

or
m

an
ce

of
A

C
oF

or
es

ta
nd

th
e

co
m

pa
re

d
m

et
ho

ds
in

pr
ed

ic
tin

g
de

fe
ct

s
on

JD
T.

C
O

R
E

μ
A

C
oF

or
es

t
C

oF
or

es
t

L
og

is
tic

R
eg

re
ss

io
n

N
ai

ve
B

ay
es

D
ec

is
io

n
T

re
e

R
P

F
B

R
P

F
B

R
P

F
B

R
P

F
B

R
P

F
B

5%
(1

1%
)

.7
69

.7
35

.7
50

.7
14

.7
42

.7
30

.7
33

.7
07

.6
19

.6
49

.6
30

.6
15

.6
06

.7
76

.6
80

.6
85

.6
99

.7
04

.7
00

.6
75

10
%

(1
7%

)
.7

67
.7

66
.7

60
.7

44
.7

54
.7

37
.7

43
.7

17
.6

34
.6

65
.6

50
.6

31
.5

65
.7

97
.6

60
.6

70
.7

17
.7

14
.7

10
.6

90

15
%

(2
2%

)
.7

69
.7

75
.7

70
.7

51
.7

37
.7

51
.7

42
.7

23
.6

40
.6

77
.6

60
.6

40
.5

53
.8

10
.6

60
.6

66
.7

16
.7

23
.7

20
.6

96

20
%

(2
7%

)
.7

74
.7

74
.7

70
.7

53
.7

49
.7

49
.7

48
.7

25
.6

55
.6

85
.6

70
.6

50
.5

40
.8

25
.6

50
.6

61
.7

19
.7

24
.7

20
.6

97

25
%

(3
1%

)
.7

76
.7

81
.7

80
.7

58
.7

43
.7

51
.7

46
.7

24
.6

67
.6

94
.6

80
.6

59
.5

26
.8

31
.6

40
.6

53
.7

20
.7

34
.7

30
.7

05

30
%

(3
6%

)
.7

81
.7

85
.7

80
.7

63
.7

55
.7

53
.7

53
.7

30
.6

85
.6

98
.6

90
.6

68
.5

16
.8

28
.6

30
.6

46
.7

26
.7

28
.7

30
.7

01

35
%

(4
1%

)
.7

79
.7

90
.7

80
.7

66
.7

48
.7

53
.7

49
.7

28
.6

97
.7

06
.7

00
.6

76
.5

05
.8

39
.6

30
.6

40
.7

23
.7

29
.7

30
.7

01

40
%

(4
6%

)
.7

85
.7

90
.7

90
.7

68
.7

51
.7

57
.7

53
.7

32
.6

98
.7

15
.7

10
.6

84
.5

00
.8

44
.6

30
.6

38
.7

29
.7

29
.7

30
.7

02

45
%

(5
1%

)
.7

88
.7

90
.7

90
.7

70
.7

54
.7

53
.7

53
.7

30
.7

11
.7

21
.7

20
.6

93
.4

93
.8

42
.6

20
.6

33
.7

24
.7

32
.7

30
.7

04

50
%

(5
6%

)
.7

95
.7

95
.7

90
.7

76
.7

53
.7

57
.7

54
.7

34
.7

19
.7

35
.7

30
.7

05
.4

90
.8

49
.6

20
.6

32
.7

27
.7

39
.7

30
.7

08

∗ M
an

n-
W

hi
tn

ey
U

-t
es

ts
ho

w
s

th
at

A
C

oF
or

es
tp

er
fo

rm
s

be
tte

r
th

an
ot

he
r

m
et

ho
ds

,a
ts

ig
ni

fic
an

tl
ev

el
0.

05



224 Autom Softw Eng (2012) 19:201–230

Ta
bl

e
15

Pe
rf

or
m

an
ce

of
A

C
oF

or
es

ta
nd

th
e

co
m

pa
re

d
m

et
ho

ds
in

pr
ed

ic
tin

g
de

fe
ct

s
on

SW
T

μ
A

C
oF

or
es

t
C

oF
or

es
t

L
og

is
tic

R
eg

re
ss

io
n

N
ai

ve
B

ay
es

D
ec

is
io

n
T

re
e

R
P

F
B

R
P

F
B

R
P

F
B

R
P

F
B

R
P

F
B

5%
(1

1%
)

.5
80

.6
87

.6
20

.6
96

.5
66

.6
23

.5
85

.6
84

.4
64

.4
48

.4
50

.6
00

.6
96

.5
99

.6
40

.7
62

.5
37

.6
15

.5
70

.6
64

10
%

(1
6%

)
.6

10
.6

93
.6

40
.7

17
.5

73
.6

23
.5

91
.6

87
.4

76
.4

58
.4

60
.6

07
.6

60
.6

17
.6

30
.7

41
.5

21
.6

17
.5

60
.6

53

15
%

(2
1%

)
.6

31
.7

04
.6

60
.7

31
.5

87
.6

36
.6

07
.6

97
.4

92
.4

75
.4

80
.6

18
.6

57
.6

21
.6

40
.7

39
.5

30
.6

21
.5

70
.6

59

20
%

(2
6%

)
.6

36
.7

08
.6

70
.7

34
.5

93
.6

44
.6

14
.7

01
.5

11
.4

99
.5

00
.6

32
.6

39
.6

26
.6

30
.7

28
.5

46
.6

32
.5

80
.6

69

25
%

(3
1%

)
.6

50
.7

17
.6

80
.7

45
.6

04
.6

47
.6

22
.7

07
.5

34
.5

21
.5

30
.6

47
.6

45
.6

31
.6

40
.7

31
.5

61
.6

41
.6

00
.6

79

30
%

(3
6%

)
.6

50
.7

29
.6

80
.7

44
.5

95
.6

57
.6

21
.7

02
.5

37
.5

27
.5

30
.6

49
.6

28
.6

37
.6

30
.7

21
.5

39
.6

48
.5

90
.6

65

35
%

(4
1%

)
.6

64
.7

38
.7

00
.7

54
.6

05
.6

46
.6

23
.7

07
.5

63
.5

40
.5

50
.6

67
.6

33
.6

36
.6

30
.7

23
.5

62
.6

51
.6

00
.6

80

40
%

(4
6%

)
.6

77
.7

41
.7

10
.7

64
.6

02
.6

46
.6

21
.7

05
.5

63
.5

46
.5

50
.6

67
.6

29
.6

34
.6

30
.7

20
.5

54
.6

42
.5

90
.6

74

45
%

(5
1%

)
.6

72
.7

57
.7

10
.7

59
.6

01
.6

67
.6

29
.7

06
.5

65
.5

67
.5

60
.6

70
.6

20
.6

39
.6

30
.7

15
.5

68
.6

65
.6

10
.6

84

50
%

(5
6%

)
.6

91
.7

59
.7

20
.7

74
.6

14
.6

48
.6

28
.7

12
.5

87
.5

54
.5

70
.6

81
.6

27
.6

31
.6

30
.7

18
.5

68
.6

54
.6

10
.6

84

∗ M
an

n-
W

hi
tn

ey
U

-t
es

ts
ho

w
s

th
at

A
C

oF
or

es
tp

er
fo

rm
s

be
tte

r
th

an
ot

he
r

m
et

ho
ds

,a
ts

ig
ni

fic
an

tl
ev

el
0.

05



Autom Softw Eng (2012) 19:201–230 225

Ta
bl

e
16

Pe
rf

or
m

an
ce

of
A

C
oF

or
es

ta
nd

th
e

co
m

pa
re

d
m

et
ho

ds
in

pr
ed

ic
tin

g
de

fe
ct

s
on

E
C

L
IP

SE
2.

0

μ
A

C
oF

or
es

t
C

oF
or

es
t

L
og

is
tic

R
eg

re
ss

io
n

N
ai

ve
B

ay
es

D
ec

is
io

n
T

re
e

R
P

F
B

R
P

F
B

R
P

F
B

R
P

F
B

R
P

F
B

5%
(6

%
)

.5
59

.5
60

.5
60

.6
27

.5
54

.5
57

.5
52

.6
25

.5
03

.5
00

.5
00

.5
80

.3
56

.6
07

.4
50

.5
32

.4
95

.5
24

.5
10

.5
88

10
%

(1
0%

)
.5

82
.5

70
.5

70
.6

41
.5

77
.5

70
.5

72
.6

39
.5

04
.5

71
.5

40
.6

08
.3

38
.6

20
.4

40
.5

22
.5

13
.5

31
.5

20
.5

96

15
%

(1
6%

)
.5

80
.5

90
.5

80
.6

47
.5

75
.5

87
.5

79
.6

43
.4

97
.6

05
.5

40
.6

13
.3

13
.6

29
.4

20
.5

06
.5

17
.5

43
.5

30
.6

02

20
%

(2
1%

)
.5

84
.5

97
.5

90
.6

51
.5

79
.5

96
.5

85
.6

48
.4

96
.6

21
.5

50
.6

16
.3

10
.6

33
.4

20
.5

05
.5

26
.5

51
.5

40
.6

08

25
%

(2
6%

)
.5

87
.6

03
.5

90
.6

53
.5

85
.5

99
.5

90
.6

51
.4

96
.6

33
.5

60
.6

18
.3

04
.6

37
.4

10
.5

01
.5

25
.5

56
.5

40
.6

08

30
%

(3
1%

)
.5

90
.6

10
.6

00
.6

57
.5

83
.6

06
.5

93
.6

53
.4

95
.6

37
.5

60
.6

18
.2

97
.6

39
.4

00
.4

96
.5

33
.5

62
.5

50
.6

14

35
%

(3
6%

)
.5

82
.6

19
.6

00
.6

57
.5

77
.6

15
.5

94
.6

53
.4

95
.6

46
.5

60
.6

19
.2

93
.6

44
.4

00
.4

94
.5

34
.5

69
.5

50
.6

16

40
%

(4
1%

)
.5

84
.6

25
.6

00
.6

59
.5

71
.6

20
.5

93
.6

51
.5

00
.6

49
.5

60
.6

23
.2

95
.6

43
.4

00
.4

95
.5

39
.5

71
.5

50
.6

19

45
%

(4
6%

)
.5

86
.6

32
.6

10
.6

63
.5

83
.6

19
.6

00
.6

57
.5

01
.6

52
.5

70
.6

24
.2

94
.6

43
.4

00
.4

94
.5

46
.5

71
.5

60
.6

22

50
%

(5
1%

)
.5

89
.6

37
.6

10
.6

65
.5

79
.6

25
.6

00
.6

56
.5

02
.6

55
.5

70
.6

25
.2

90
.6

43
.4

00
.4

92
.5

48
.5

80
.5

60
.6

25

∗ M
an

n-
W

hi
tn

ey
U

-t
es

ts
ho

w
s

th
at

A
C

oF
or

es
tp

er
fo

rm
s

be
tte

r
th

an
ot

he
r

m
et

ho
ds

,a
ts

ig
ni

fic
an

tl
ev

el
0.

05



226 Autom Softw Eng (2012) 19:201–230

Ta
bl

e
17

Pe
rf

or
m

an
ce

of
A

C
oF

or
es

ta
nd

th
e

co
m

pa
re

d
m

et
ho

ds
in

pr
ed

ic
tin

g
de

fe
ct

s
on

E
C

L
IP

SE
3.

0—
PA

C
K

A
G

E

μ
A

C
oF

or
es

t
C

oF
or

es
t

L
og

is
tic

R
eg

re
ss

io
n

N
ai

ve
B

ay
es

D
ec

is
io

n
T

re
e

R
P

F
B

R
P

F
B

R
P

F
B

R
P

F
B

R
P

F
B

5%
(1

2%
)

.7
96

.7
11

.7
40

.5
81

.7
83

.7
17

.7
45

.5
95

.6
29

.6
90

.6
60

.5
72

.4
96

.7
87

.6
00

.6
07

.6
80

.7
02

.6
90

.5
84

10
%

(1
8%

)
.8

09
.7

35
.7

70
.6

24
.8

01
.7

19
.7

56
.5

98
.6

43
.6

90
.6

60
.5

72
.4

68
.7

94
.5

90
.5

96
.7

05
.7

11
.7

10
.5

97

15
%

(2
3%

)
.8

26
.7

44
.7

80
.6

34
.7

98
.7

23
.7

57
.6

06
.6

45
.6

97
.6

70
.5

81
.4

46
.8

02
.5

70
.5

86
.7

00
.7

15
.7

10
.6

05

20
%

(2
9%

)
.8

35
.7

52
.7

90
.6

49
.8

04
.7

27
.7

62
.6

14
.6

57
.7

00
.6

80
.5

86
.4

27
.8

07
.5

60
.5

77
.7

09
.7

17
.7

10
.6

09

25
%

(3
4%

)
.8

38
.7

57
.7

90
.6

56
.7

97
.7

32
.7

62
.6

23
.6

64
.7

09
.6

80
.5

98
.4

10
.8

13
.5

40
.5

68
.7

14
.7

17
.7

10
.6

08

30
%

(4
0%

)
.8

39
.7

68
.8

00
.6

75
.8

12
.7

34
.7

70
.6

25
.6

77
.7

15
.6

90
.6

05
.4

01
.8

17
.5

40
.5

63
.7

17
.7

19
.7

20
.6

11

35
%

(4
5%

)
.8

53
.7

74
.8

10
.6

83
.8

09
.7

38
.7

70
.6

29
.6

74
.7

21
.7

00
.6

12
.3

93
.8

23
.5

30
.5

59
.7

20
.7

22
.7

20
.6

13

40
%

(5
1%

)
.8

55
.7

82
.8

20
.7

01
.8

12
.7

39
.7

73
.6

40
.6

89
.7

22
.7

00
.6

21
.3

87
.8

22
.5

20
.5

55
.7

25
.7

19
.7

20
.6

16

45
%

(5
5%

)
.8

56
.7

85
.8

20
.7

05
.7

98
.7

42
.7

67
.6

40
.7

04
.7

32
.7

20
.6

29
.3

79
.8

30
.5

20
.5

51
.7

17
.7

22
.7

20
.6

16

50
%

(6
1%

)
.8

68
.8

00
.8

30
.7

27
.8

11
.7

41
.7

73
.6

40
.6

99
.7

32
.7

10
.6

31
.3

68
.8

29
.5

10
.5

44
.7

25
.7

21
.7

20
.6

17

∗ M
an

n-
W

hi
tn

ey
U

-t
es

ts
ho

w
s

th
at

A
C

oF
or

es
tp

er
fo

rm
s

be
tte

r
th

an
ot

he
r

m
et

ho
ds

,a
ts

ig
ni

fic
an

tl
ev

el
0.

05



Autom Softw Eng (2012) 19:201–230 227

Ta
bl

e
18

Pe
rf

or
m

an
ce

of
A

C
oF

or
es

ta
nd

th
e

co
m

pa
re

d
m

et
ho

ds
in

pr
ed

ic
tin

g
de

fe
ct

s
on

X
A

L
A

N

μ
A

C
oF

or
es

t
C

oF
or

es
t

L
og

is
tic

R
eg

re
ss

io
n

N
ai

ve
B

ay
es

D
ec

is
io

n
T

re
e

R
P

F
B

R
P

F
B

R
P

F
B

R
P

F
B

R
P

F
B

5%
(1

1%
)

.6
42

.6
56

.6
40

.6
76

.6
32

.6
41

.6
32

.6
68

.5
80

.6
41

.6
00

.6
48

.4
64

.7
69

.5
80

.6
12

.5
96

.6
33

.6
10

.6
50

10
%

(1
7%

)
.6

21
.6

68
.6

40
.6

79
.5

96
.6

43
.6

14
.6

58
.5

39
.6

49
.5

80
.6

35
.4

31
.7

65
.5

50
.5

91
.5

61
.6

49
.5

90
.6

44

15
%

(2
2%

)
.6

21
.6

78
.6

40
.6

84
.5

92
.6

33
.6

09
.6

54
.5

27
.6

53
.5

80
.6

31
.4

14
.7

55
.5

30
.5

79
.5

73
.6

43
.6

00
.6

48

20
%

(2
7%

)
.6

31
.6

88
.6

60
.6

93
.5

90
.6

39
.6

11
.6

55
.5

15
.6

63
.5

80
.6

27
.4

03
.7

69
.5

30
.5

72
.5

63
.6

41
.5

90
.6

43

25
%

(3
2%

)
.6

36
.6

85
.6

60
.6

96
.6

00
.6

36
.6

15
.6

59
.5

15
.6

57
.5

70
.6

26
.3

95
.7

55
.5

20
.5

66
.5

67
.6

39
.5

90
.6

45

30
%

(3
8%

)
.6

52
.6

95
.6

70
.7

06
.6

02
.6

37
.6

17
.6

59
.5

21
.6

67
.5

80
.6

31
.3

98
.7

66
.5

20
.5

69
.5

78
.6

39
.6

00
.6

48

35
%

(4
2%

)
.6

51
.7

01
.6

70
.7

08
.6

00
.6

39
.6

17
.6

59
.5

19
.6

66
.5

80
.6

29
.3

95
.7

65
.5

20
.5

67
.5

76
.6

45
.6

00
.6

51

40
%

(4
7%

)
.6

64
.7

03
.6

80
.7

14
.6

11
.6

46
.6

26
.6

67
.5

15
.6

76
.5

80
.6

30
.3

88
.7

68
.5

10
.5

62
.5

83
.6

44
.6

10
.6

53

45
%

(5
3%

)
.6

73
.7

13
.6

90
.7

22
.6

13
.6

47
.6

28
.6

67
.5

11
.6

84
.5

80
.6

29
.3

86
.7

64
.5

10
.5

61
.5

87
.6

52
.6

20
.6

58

50
%

(5
8%

)
.6

75
.7

23
.7

00
.7

27
.6

12
.6

46
.6

27
.6

65
.5

03
.6

74
.5

70
.6

22
.3

83
.7

75
.5

10
.5

59
.5

91
.6

52
.6

20
.6

58

∗ M
an

n-
W

hi
tn

ey
U

-t
es

ts
ho

w
s

th
at

A
C

oF
or

es
tp

er
fo

rm
s

be
tte

r
th

an
ot

he
r

m
et

ho
ds

,a
ts

ig
ni

fic
an

tl
ev

el
0.

05



228 Autom Softw Eng (2012) 19:201–230

Ta
bl

e
19

Pe
rf

or
m

an
ce

of
A

C
oF

or
es

ta
nd

th
e

co
m

pa
re

d
m

et
ho

ds
in

pr
ed

ic
tin

g
de

fe
ct

s
on

L
U

C
E

N
E

μ
A

C
oF

or
es

t
C

oF
or

es
t

L
og

is
tic

R
eg

re
ss

io
n

N
ai

ve
B

ay
es

D
ec

is
io

n
T

re
e

R
P

F
B

R
P

F
B

R
P

F
B

R
P

F
B

R
P

F
B

5%
(2

0%
)

.7
36

.7
16

.7
20

.6
32

.7
10

.7
07

.7
04

.6
22

.6
61

.7
13

.6
80

.6
29

.4
84

.8
02

.5
90

.6
11

.6
77

.6
97

.6
80

.6
07

10
%

(2
4%

)
.7

63
.7

15
.7

30
.6

33
.7

31
.6

89
.7

06
.6

06
.6

85
.7

11
.6

90
.6

33
.4

61
.8

18
.5

80
.6

03
.6

78
.6

87
.6

80
.6

02

15
%

(3
1%

)
.7

88
.7

39
.7

60
.6

69
.7

40
.7

00
.7

16
.6

21
.7

11
.7

21
.7

10
.6

47
.4

61
.8

12
.5

80
.6

02
.7

06
.6

89
.6

90
.6

04

20
%

(3
4%

)
.7

84
.7

29
.7

50
.6

59
.7

43
.7

01
.7

18
.6

24
.7

09
.7

20
.7

10
.6

49
.4

48
.8

22
.5

70
.5

96
.6

99
.6

97
.6

90
.6

18

25
%

(4
2%

)
.8

11
.7

51
.7

80
.6

90
.7

55
.6

92
.7

20
.6

20
.7

20
.7

20
.7

20
.6

54
.4

27
.8

25
.5

60
.5

84
.7

06
.7

02
.7

00
.6

31

30
%

(4
8%

)
.8

20
.7

72
.7

90
.7

18
.7

44
.7

17
.7

28
.6

44
.7

22
.7

45
.7

30
.6

74
.4

15
.8

43
.5

50
.5

78
.6

88
.7

18
.7

00
.6

40

35
%

(5
3%

)
.8

29
.7

78
.8

00
.7

24
.7

50
.7

08
.7

26
.6

35
.7

24
.7

41
.7

30
.6

74
.4

25
.8

47
.5

60
.5

85
.7

05
.7

12
.7

10
.6

37

40
%

(5
9%

)
.8

37
.7

92
.8

10
.7

46
.7

48
.7

13
.7

28
.6

44
.7

14
.7

40
.7

20
.6

74
.4

08
.8

36
.5

40
.5

73
.7

02
.7

07
.7

00
.6

35

45
%

(6
6%

)
.8

52
.8

14
.8

30
.7

72
.7

40
.7

20
.7

27
.6

49
.7

23
.7

53
.7

40
.6

84
.4

12
.8

42
.5

50
.5

76
.7

15
.7

25
.7

20
.6

51

50
%

(7
2%

)
.8

60
.8

36
.8

50
.7

99
.7

32
.7

22
.7

24
.6

50
.7

20
.7

54
.7

30
.6

87
.4

07
.8

48
.5

50
.5

74
.7

04
.7

21
.7

10
.6

47

∗ M
an

n-
W

hi
tn

ey
U

-t
es

ts
ho

w
s

th
at

A
C

oF
or

es
tp

er
fo

rm
s

be
tte

r
th

an
ot

he
r

m
et

ho
ds

,a
ts

ig
ni

fic
an

tl
ev

el
0.

05



Autom Softw Eng (2012) 19:201–230 229

References

Angluin, D., Laird, P.: Learning from noisy examples. Mach. Learn. 2(4), 343–370 (1988)
Balcan, M.F., Broder, A.Z., Zhang, T.: Margin based active learning. In: Proceedings of the 20th Annual

Conference on Learning Theory, San Diego, CA, pp. 35–50 (2007)
Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from

labeled and unlabeled examples. J. Mach. Learn. Res. 7(11), 2399–2434 (2006)
Blum, A., Mitchell, T.: Combining labeled and unlabeled datawith co-training. In: Proceedings of the 11th

Annual Conf. on Computational Learning Theory, pp. 92–100 (1998)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Chapelle, O., Zien, A.: Semi-supervised learning by low density separation. In: Proceedings of the 10th

International Workshop on Artificial Intelligence and Statistics, Savannah Hotel, Barbados, pp. 57–64
(2005)

Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press, Cambridge (2006)
Dagan, I., Engelson, S.P.: Committee-based sampling for training probabilistic classifiers. In: Proceedings

of the 12th International Conference on Machine Learning, Tahoe City, CA, pp. 150–157 (1994)
Freund, Y.H.S., Seung, E.S., Tishby, N.: Selective sampling using the query by committee algorithm.

Mach. Learn. 28(2–3), 133–168 (1997)
Gibbons, J.D.: Nonparametric Statistical Inference. Marcel Dekker, New York (1985)
Goldman, S., Zhou, Y.: Enhancing supervised learning with unlabeled data. In: Proceedings of the 17th

International Conference on Machine Learning, San Francisco, CA, pp. 327–334 (2000)
Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: Saul, L.K., Weiss, Y.,

Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 17, pp. 529–536. MIT
Press, Cambridge (2005)

Hassan, E.: Predicting faults using the complexity of code changes. In: Proceedings of the 31th Interna-
tional Conference on Software Engineering, Vancouver, Canada, pp. 78–88 (2009)

Jiang, Y., Li, M., Zhou, Z.-H.: Software defect detection with ROCUS. J. Comput. Sci. Technol. 26(2),
328–342 (2011)

Joachims, T.: Transductive inference for text classification using support vector machines. In: Proceedings
of the 16th International Conference on Machine Learning, Bled, Slovenia, pp. 200–209 (1999)

Kim, S., Zimmermann, T., Whitehead, E., Zeller, J.A.: Predicting faults from cached history. In: Proceed-
ings of ICSE’07, Minneapolis, USA, pp. 489–498 (2007)

Koru, L.H., Liu, H.: Building effective defect-prediction models in practice. IEEE Softw. 22(6), 23–29
(2005)

Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking classification models for software de-
fect prediction: a proposed framework and novel findings. IEEE Trans. Softw. Eng. 34(4), 485–496
(2008)

Lewis, D., Gale, W.: A sequential algorithm for training text classifiers. In: Proceedings of the 17th An-
nual International ACM SIGIR Conference on Research and Development in Information Retrieval,
Dublin, Ireland, pp. 3–12 (1994)

Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learning. In: Proceedings of
the 11th International Conference on Machine Learning, New Brunswick, NJ, pp. 148–156 (1994)

Li, M., Zhou, Z.H.: Improve computer-aided diagnosis with machine learning techniques using undiag-
nosed samples. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 37(6), 1088–1098 (2007)

Li, M., Li, H., Zhou, Z.H.: Semi-supervised document retrieval. Inf. Process. Manag. 45(3), 341–355
(2009)

Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn defect predictors. IEEE
Trans. Softw. Eng. 33(1), 2–13 (2007)

Miller, D.J., Uyar, H.S.: A mixture of experts classifier with learning based on both labelled and unlabelled
data. In: Mozer, M., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing
Systems, vol. 9, pp. 571–577. MIT Press, Cambridge (1997)

Muslea, I., Minton, S., Knoblock, C.A.: Active + semi-supervised learning = robust multi-view learning.
In: Proceedings of the 19th International Conference on Machine Learning, Sydney, Australia, pp.
435–442 (2002)

Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In: Proceedings of
ICSE’06, Shanghai, China, pp. 452–461 (2006)

Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from labeled and unlabeled docu-
ments using EM. Mach. Learn. 39(2–3), 103–134 (2000)



230 Autom Softw Eng (2012) 19:201–230

Seung, H., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings of the 5th ACM Workshop
on Computational Learning Theory, Pittsburgh, PA, pp. 287–294 (1992)

Shahshahani, B., Landgrebe, D.: The effect of unlabeled samples in reducing the small sample size prob-
lem and mitigating the Hughes phenomenon. IEEE Trans. Geosci. Remote Sens. 32(5), 1087–1095
(1994)

Steedman, M., Osborne, M., Sarkar, A., Clark, S., Hwa, R., Hockenmaier, J., Ruhlen, P., Baker, S., Crim, J.:
Bootstrapping statistical parsers from small data sets. In: Proceedings of the 11th Conference on the
European Chapter of the Association for Computational Linguistics, Budapest, Hungary, pp. 331–338
(2003)

Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. In:
Proceedings of the 17th International Conference on Machine Learning, Stanford, CA, pp. 999–1006
(2000)

Turhan, B., Menzies, T., Bener, A.B., Di Stefano, J.: On the relative value of cross-company
and within-company data for defect prediction. Empir. Softw. Eng. 14, 540–578 (2009).
doi:10.1007/s10515-011-0092-1. See http://portal.acm.org/citation.cfm?id=1612763.1612782

Wang, W., Zhou, Z.H.: On multi-view active learning and the combination with semi-supervised learning.
In: Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, pp.
1152–1159 (2008)

Xu, J.M., Fumera, G., Roli, F., Zhou, Z.H.: Training spam assassin with active semi-supervised learning.
In: Proceedings of the 6th Conference on Email and Anti-Spam, Mountain View, CA (2009)

Zhang, H.: An investigation of the relationships between lines of code and defects. In: Proceedings of 25th
IEEE International Conference on Software Maintenance, Edmonton, Canada, pp. 274–283 (2009)

Zhang, H., Wu, R.: Sampling program quality. In: Proceedings of 26th IEEE International Conference on
Software Maintenance, Timisoara, Romania, pp. 1–10 (2010)

Zhang, H., Zhang, X.: Comments on “Data mining static code attributes to learn defect predictors”. IEEE
Trans. Softw. Eng. 33(9), 635–637 (2007)

Zhang, H., Zhang, X., Gu, M.: Predicting defective software components from code complexity measures.
In: Proceedings of 13th IEEE Pacific Rim International Symposium on Dependable Computing, Aus-
tralia, pp. 93–96 (2007)

Zhang, H., Nelson, A., Menzies, T.: On the value of learning from defect dense components for soft-
ware defect prediction. In: Proceedings of International Conference on Predictor Models in Software
Engineering, Timisoara, Romania, p. 14 (2010)

Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency.
In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems 16.
MIT Press, Cambridge (2004)

Zhou, Z.-H.: When semi-supervised learning meets ensemble learning. In: Proceedings of 8th International
Workshop on Multiple Classifier Systems, Reykjavik, Iceland, pp. 529–538 (2009)

Zhou, Z.-H., Li, M.: Tri-training: Exploiting unlabeled data using three classifiers. IEEE Trans. Knowl.
Data Eng. 17(11), 1529–1541 (2005)

Zhou, Z.-H., Li, M.: Semi-supervised regression with co-training style algorithms. IEEE Trans. Knowl.
Data Eng. 19(11), 1479–1493 (2007)

Zhou, Z.-H., Li, M.: Semi-supervised learning by disagreement. Knowl. Inf. Syst. 24(3), 415–439 (2010)
Zhou, Z.-H., Chen, K.J., Dai, H.B.: Enhancing relevance feedback in image retrieval using unlabeled data.

ACM Trans. Inf. Sys. 24(2), 219–244 (2006)
Zhu, X.: Semi-supervised learning literature survey. Tech. Rep. 1530, Department of Computer Sci-

ences, University of Wisconsin at Madison, Madison, WI (2006). http://www.cs.wisc.edu/~jerryzhu/
pub/ssl_survey.pdf

Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and harmonic func-
tions. In: Proceedings of the 20th International Conference on Machine Learning, Washington, DC,
pp. 912–919 (2003)

Zimmermann, T., Nagappan, N.: Predicting defects using network analysis on dependency graphs. In:
Proceedings of the 30th International Conference on Software Engineering, Leipzig, Germany, pp.
531–540 (2008)

Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for eclipse. In: Proceedings of International
Conference on Predictor Models in Software Engineering, Minneapolis, USA (2007)

Zimmermann, T., Nagappan, N., Gall, H., Giger, E., Murphy, B.: Cross-project defect prediction: A large
scale experiment on data vs. domain vs. process. In: Proceedings of ESEC/FSE 2009, Amsterdam,
The Netherlands, pp. 91–100 (2009)

http://dx.doi.org/10.1007/s10515-011-0092-1
http://portal.acm.org/citation.cfm?id=1612763.1612782
http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf

	Sample-based software defect prediction with active and semi-supervised learning
	Abstract
	Introduction
	Sample-based defect prediction
	Sampling with conventional machine learners
	Sampling with semi-supervised learning-the CoForest method
	Sampling with active semi-supervised learning-the ACoForest method

	Experiments
	Experimental settings
	Method 1: Sampling with conventional learners
	Method 2: Sampling with CoForest
	Method 3: Sampling with ACoForest

	Discussions
	Applying the proposed methods
	Threats to validity

	Related work
	Software defect prediction
	Semi-supervised learning and active learning

	Conclusion
	Acknowledgements
	Appendix
	References


