

ReLink: Recovering Links between Bugs and Changes
Rongxin Wu†, Hongyu Zhang†, Sunghun Kim§ and S.C. Cheung§

†School of Software, Tsinghua University
Beijing 100084, China

wrx09@mails.tsinghua.edu.cn, hongyu@tsinghua.edu.cn
§Department of Computer Science and Engineering

The Hong Kong University of Science and Technology, Hong Kong, China
{hunkim, scc}@cse.ust.hk

ABSTRACT
Software defect information, including links between bugs and
committed changes, plays an important role in software
maintenance such as measuring quality and predicting defects.
Usually, the links are automatically mined from change logs and
bug reports using heuristics such as searching for specific
keywords and bug IDs in change logs. However, the accuracy of
these heuristics depends on the quality of change logs. Bird et al.
found that there are many missing links due to the absence of bug
references in change logs. They also found that the missing links
lead to biased defect information, and it affects defect prediction
performance.
We manually inspected the explicit links, which have explicit bug
IDs in change logs and observed that the links exhibit certain
features. Based on our observation, we developed an automatic
link recovery algorithm, ReLink, which automatically learns
criteria of features from explicit links to recover missing links.
We applied ReLink to three open source projects. ReLink reliably
identified links with 89% precision and 78% recall on average,
while the traditional heuristics alone achieve 91% precision and
64% recall. We also evaluated the impact of recovered links on
software maintainability measurement and defect prediction, and
found the results of ReLink yields significantly better accuracy
than those of traditional heuristics.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement–Restructuring, reverse engineering, and
reengineering, D.2.8 [Software Engineering]: Metrics – Product
metrics

General Terms
Bias, Measurement, Experimentation

Keywords
Mining software repository, missing links, data quality, bugs,
changes.

1. INTRODUCTION
Software defect information, including links between bug reports
in bug tracking system and committed changes in source code
repository, is the key information for software maintenance such
as measuring software quality and predicting defects. It is possible
to understand software maintenance efforts based on quality
metrics derived from the links between bugs and changes, such as
the percentage of buggy files [22, 33]. Defect information is also
used to train models for defect prediction [17, 18, 33, 35, 36].

To collect links between bugs and changes automatically, many
researchers mine bug reports in bug tracking systems and change
logs in version archives. Heuristics traditionally used include
searching for keywords (such as "Fixed" or "Bug") and bug IDs
(such as “#42233”) [5, 21, 27, 28, 33, 34] in change logs.

Recent studies revealed that these heuristics likely yield biased
defect data, since they primarily rely on the comments in change
logs [6, 7, 25]. Developers often maintain high quality change
logs, but it is possible that they omit bug references in change logs.
For example, when a developer fixes a bug in a revision, she may
not document the fixed bug ID in the change log. Then, traditional
heuristics miss the links between the bug and the change. As a
result, defect information collected by traditional heuristics
includes bias, especially lots of false negatives – missing links.
Bird and Bachmann et al. confirmed this problem and reported
that 54% of fixed bugs in the bug database are not linked to
change logs [6, 7].
Unfortunately, these biased defect data affect software quality
measurement and defect prediction performance. Bird et al. found
that the BugCache algorithm [17] is sensitive to the biased data
[7]. Kim et al. found that the change classification algorithm [16]
is also sensitive to the biased data [18] when the number of
instances is small. It is desirable to collect more accurate defect
information by recovering the missing links.

To explore possibilities of recovering the missing links
automatically, we conducted a qualitative study to identify
characteristics of explicit links based on the bug IDs in change
logs. We found that the links between bugs and changes exhibit
certain features. For example, the bug-fixing time is close to the
change-commit time, the change logs and the bug reports share
textual similarity, and the developers responsible for a bug are
typically the committers of the bug-fixing change.

Based on these findings, we propose an automatic link recovery
algorithm, ReLink. Relink automatically learns satisfaction
criteria of features from explicit links, and by applying the learned

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09...$10.00.

15

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2025113.2025120&domain=pdf&date_stamp=2011-09-09

criteria it checks if the features of an unknown link satisfy the
criteria. If the unknown link satisfies all the feature criteria, it is
considered a valid link.

We have applied ReLink to three open source projects (ZXing,
OpenIntents, and Apache) and two simulation studies (on Apache
and Eclipse MAT). We have evaluated the recovered links by
comparing them to the ground truth links, which are manually
recovered and verified links. Our experimental results are
promising: on average, for the three open source projects, ReLink
recovered links with 78% recall and 89% precision, while the
traditional heuristics can only identify links with 64% recall and
91% precision.

We have also evaluated the practical impact of defect information
obtained by ReLink. We measured the effects of ReLink on
several software maintainability metrics. We also built defect
prediction models using defect information with/without ReLink.
Our experimental results indicate ReLink has nontrivial positive
impacts on the maintenance studies.
In summary, our paper makes the following contributions:

• We propose ReLink, an automatic link recovery algorithm.
We also report our experimental evaluation of ReLink.

• We report an empirical study on measuring the impact of
recovered links on maintenance studies, especially on
software defect prediction.

The remainder of this paper is organized as follows. In Section 2,
we describe the traditional heuristics for mining links and their
main challenges. In Section 3, we present ReLink, the proposed
approach to mining links. We evaluate the performance of ReLink
in Section 4 and its practical effects on software maintenance
studies in Section 5. Sections 6 and 7 discuss the threats to
validity and the related work respectively. We conclude the paper
in Section 8.

2. MINING LINKS: TRADITIONAL
HEURISTICS
This section reviews the use of traditional heuristics to mine the
links between bugs and changes. In addition, we evaluate the
quality of links mined with traditional heuristics, and discuss the
involved challenges.

2.1 Traditional Heuristics
During software maintenance, it is common that changes and bugs
are recorded in version control systems (such as CVS and SVN)
and bug tracking systems (such as BugZilla), respectively.
Developers often maintain change logs describing what they have
changed and what bugs they have dealt with.

Traditional heuristics to identify bug-fixing changes rely on the
premise that developers leave hints or links about bug fixes in the
change logs. They look for specific keywords such as ‘fixed’,
‘bug’, and for information linking to bugs such as bug ID
references in change logs. These traditional heuristics are widely
used to mark bug fixes, identify bug-introducing changes, and
build defect prediction models [5, 14, 16, 21, 27, 28, 33, 34].

However, the results of traditional heuristics largely rely on the
change log quality. Recently, Bird et al. [7] noticed that, only a
fraction of bug fixes are labeled in change logs explicitly, and this
causes systematic biases in finding the links. The biases can
significantly reduce the effectiveness of the follow-up studies. To

overcome this challenge, Bird et al. [8] developed a manual link
recovery tool, LINKSTER. The manually recovered links might
be much more accurate. However, the practice does not scale
because it requires significant manual effort.

2.2 Evaluation of Traditional Heuristics
To evaluate traditional heuristics and measure the number of
missing links, we performed a replication study of Bird et al.’s [7]
on two Android open source projects. In this study, we adopted
the traditional heuristics proposed by Bachmann and Bernstein
[5]:

1) Scan through the change logs for bug IDs in a given format
(e.g. “issue 681”, “bug 239” and so on).

2) Exclude all false-positive bug numbers (e.g. “r420”,
“2009-05-07 10:47:39 -0400” and so on).

3) Check if there are other potential bug number formats or
false positive number formats, add the new formats and scan
the logs iteratively.

4) Check if potential bug numbers exist in the bug-tracking
database with their status marked as fixed.

Based on these heuristics we mined the links between change logs
and bug reports. Then, we measured the number of fixed bugs
successfully linked to change logs, as well as the number of links
identified.

The two projects, ZXing1 and OpenIntents2, which we studied are
highly active Android projects. ZXing is a barcode
image-processing library for Android-based phones, and
OpenIntents is an open intents library. Table 1 shows the results
of the replication study. For ZXing, only 40.7% (55 out of 135) of
the fixed bugs were found linked to change logs and 48.2% of the
links were identified. Similarly, only 54 out of 101 bugs were
linked to change logs for OpenIntents and 67.4% links were
identified. Our results are consistent with Bird et al.’s results for
Apache project [6]. They showed that 256 out of 559 (46%) bugs
were linked and there were many missing links. In the next
section, we briefly discuss the reasons of having missing links and
the challenges of using traditional heuristics.

Table 1: Linking results of the traditional heuristics
Project Revi-

sions
Fixed

Bugs
％Linked

Bugs

Links
% Links
Identified

ZXing 1-1694 135 40.7% 143 48.2%
OpenIntents 1-2890 101 53.5% 129 67.4%

2.3 Challenges
As shown in Table 1, there is a large number of bugs that cannot
be linked to the committed changes by traditional heuristics.
However, the results do not necessarily mean these bugs are not
associated with any committed changes. We manually
investigated the unlinked bugs and identified the following
reasons that cause missing links:
Missing bug reference in change logs
Since leaving explicit bug reference in change logs is optional to
developers, it is possible that developers do not write related bug
IDs after they have fixed bugs. In this case, traditional heuristics
fail to identify links between change logs and bugs. For example,

1 http://code.google.com/p/zxing/
2 http://www.openintents.org/

16

consider the change log3 and the bug report4 in Figure 1, which
are taken from the ZXing project. There are no bug ID references
in the change log therefore traditional heuristics cannot identify
which bug the revision 148 has fixed.

However, our manual examination found that this change log can
be actually linked to a bug report: we searched through all bug
reports and found that the bug report #18 contained similar
problem descriptions as the change log. Also, we noticed that
there was a bug-fixing comment made for bug #18 on Jan 22,
2008, by the developer “srowen@gmail.com”. The revision #148
was also committed on Jan 22, 2008 by the author “srowen”.
Therefore, it is likely that the revision #148 is linked to bug #18
(we also checked the source code and confirmed this link). The
commonalities give an indicator of the link between the bug and
the change. They provide clues to recover the missing link.

Change Log (Revision: 148; Author: srowen; Date: Jan 22, 2008)
Name of midlet is "ZXingMIDlet", not "ZXingMidlet"!
--
Bug Report (Issue 18; Status: Fixed):
Reported by herf...@yahoo.com, Jan 11, 2008
Issue 18: does not work on nokia 5300

Comment 1 by project member srowen@gmail.com, Jan 11, 2008
Which version, regular or basic? …
…
Comment 3 by herf...@yahoo.com, Jan 12, 2008
I tested both of them (regular and basic) but in both case it just
make an exception…
…
Comment 5 by project member srowen@gmail.com, Jan 22, 2008
…The class is called "ZXingMIDlet" but the exception mentions
"ZXingMidlet" (note different capitalization). It looks like the
manifest file I wrote gets this wrong. …

Comment 6 by project member srowen@gmail.com, Jan 22, 2008
I think I have fixed this particular problem by correcting…
Can you try the most recent version from…

Figure 1: An example of missing links
Irregular bug reference formats
The traditional heuristics, such as Bachmann and Bernstein’s
approach [5], search for patterns in change logs using regular
expressions (e.g. “issue 681”, “bug 239” and so on). However, our
manual examination found that developers used many different
ways to give bug references in change logs, such as “solve
problem 681”, “Fixed for #239”, “see #149”, “for Issue 143”
(“Issue 143” is strikethrough and marked-up in HTML), etc.
Developers may also occasionally make typos such as “fic 239”
[23]. The format may even vary across change logs within the
same project, as different open source contributors may have their
own preferences. It is not easy to develop a single, generic tool to
support all possible bug reference formats.

The above analysis motivates us to develop a new link recovery
algorithm. In our approach, we identify features of links between
bugs and changes, and apply them to recover the missing links.

3 http://code.google.com/p/zxing/source/detail?r=148
4 http://code.google.com/p/zxing/issues/detail?id=18

3. RELINK: RECOVERING LINKS
BETWEEN BUGS AND CHANGES
In this section, we present ReLink, a new approach to recovering
the links between bugs and changes.

3.1 Features of Links
Our approach is based on the identification of features of the links
between bugs and changes. First, we identify explicit links, which
are links that can be discovered by traditional heuristics. We then
analyze the features of these links. Through this analysis, we have
identified the following features, which can be later used to
recover the missing links:

Time Interval: This is the interval between the time (tf) when a
bug was fixed as given by its bug report and the time (tc) when the
corresponding bug fix was committed at the code repository. The
interval (tf – tc) is a useful feature because it leverages the
knowledge that a bug should be fixed after its creation and before
its closure. After developers have committed the code change for
a bug fix (at time tc), they are obliged to update the bug report (at
time tf) that the bug has been fixed. Therefore, tf should be greater
than but close to tc for a linked bug and its committed code
change.

Bug Owner and Change Committer: For linked bugs and
changes, there exists a mapping between the bug owner and the
change committer. Ideally, the committer who makes the
bug-fixing changes should be the person who is responsible for
fixing the bug. It is also possible that the change committer and
the bug owner are different persons, but the mapping between
them could be identified by mining the software repositories
(which will be discussed in Section 3.2.2).

Text Similarity: This is the textual similarity between bug reports
and change logs. For linked bugs and changes, the natural
language descriptions in the bug report are often similar to those
in the change logs, as they may refer to the same issue and share
similar keywords.

3.2 Mining Features of Links
3.2.1 The Interval between the Bug-fixing time and
the Change-Commit Time
Although the interval between bug-fixing time and the commit
time is a useful feature for mining links, determining the length of
such an interval is a nontrivial task. We observed from our
empirical studies that developers do not always change the status
of bugs to “Fixed” in the bug tracking system immediately after
they have committed the bug-fixing changes. For example, we
investigated the explicit links of the ZXing project mined by
traditional heuristics, and observed when developers change the
bugs’ status to “Fixed” after the bug-fixing change is committed.
We found that for 20% of explicit links, their bug-fixing time and
change-commit time differ by more than one day. The bug-fixing
time and the change-commit time could be far apart. Our first
research challenge is therefore to determine the actual bug-fixing
time from each bug report.

With further investigations, we found that most bug comments are
related to bug-fixing activities, as developers often post comments
to the bug tracking system to report a bug fix and notify the bug
reporter. Therefore, we could determine the bug-fixing time
according to the time of comments in bug reports. For example,
consider the change log and the bug report in Figure 1. The

17

revision #148 was committed on Jan 22, 2008. There was also a
bug-fixing comment made for bug #18 on Jan 22, 2008, by the
change committer (“srowen”).

We also empirically verified the time interval feature using the
explicit links. For ZXing and OpenIntents, on average, each bug
received 2-3 comments. For more than 93% of the links, the
intervals between bug-comment time and the change-commit time
were less than 24 hours. For more than 96% of the links, the
intervals were less than one week. The results indicate that in
most cases, the change-commit time is close to a bug-comment
time.

3.2.2 Mapping between Bug Owners and Change
Committers
When bugs are assigned to a certain developer to fix, the
developer information Pb is recorded by bug tracking systems.
When bug-fixing changes are committed, the committer
information Pc is recorded by version control systems. In our
empirical studies, we compared the change committers and the
bug report owners for linked bugs and changes. We found that
they may not have the same names. This is because developers
may use different login names in different scenarios. It is also
possible that there is an appointed person in the team to confirm
bug fixes and change bug status. Table 2 gives some examples for
the identified mappings between committers and bug owners.

Table 2: Examples of the mapping between bug owners and
change committers

Bug
Owner Pb

Change
Committer Pc

Project

dswitkin@gmail.com dswitkin ZXing
dswitkin@google.com dswitkin@google.com ZXing

srowen@gmail.com srowen ZXing
peli0101@googlemail.com peli0101 Openintents

Will Rowe wrowe Apache
Erik Abele erikabele Apache

To identify the mappings between bug owners and change
committers, we again examined the comments in bug reports. Our
empirical studies found that developers often actively discuss
bug-related issues and announce bug fixes via the bug tracking
system. Therefore, it is likely that one of the commenters is the
bug owner who is responsible for bug fixing. For example, in the
ZXing project, for 99% of links that are found by traditional
heuristics, the developers who committed bug-fixing changes
posted bug comments in the bug tracking system. In the
OpenIntents project, all developers who fixed bugs posted
comments in the bug reports.

3.2.3 The Similarity between Bug Reports and
Change Logs
Information Retrieval (IR) technology is commonly used to
process textual documents in natural languages. In this project, we
treat bug reports and change logs as texts and compare their
similarities.

It is expected that for linked bugs and changes, bug reports and
change logs exhibit certain similarity. To compute the similarity
between bug reports and change logs, we first extract text features.
Our approach adopts the Vector Space Model (VSM), a widely
used model in IR technology [9]. In VSM, a document is
represented as an n dimension vector <w1, w2, w3,…wn>, where n

is the number of distinct terms and wi (1≤ wi ≤ n) represents the
weight of a unique term.

One of the most important issues in text processing is to select
appropriate terms to represent the entire documents. In our case,
the number of terms in bug reports and change logs could be large.
To select the representative terms, we use the following steps to
help reduce dimensions:

1) Remove stop words. Stop words are the words that have no
strong meaning, such as “a”, “an”, “the” and so on.

2) Use one term to represent all other terms that have the same
stemmer. For example, the tokens “fixing”, “fixes”, and
“fixed” all share the same root “fix”, thus we use “fix” to
represent the others.

3) Use one term to represent all synonymous words. We apply
the tool WordNet [12] to facilitate the selection of the
synonymous words. For example, according to the
definitions in the WordNet dictionary, the words “additional”
and “extra” are synonymous words, therefore we can replace
“additional” with “extra”.

After selecting the terms in bug reports and change logs, we then
calculate the weight for each term. In our approach, we use Term
Frequency-Inverse Document Frequency (TFIDF) metric [9] to
calculate the weight. The basic idea of TFIDF is that the weight wi
of a term in a document increases with its occurrence frequency in
the specific document and decreases with its occurrence frequency
in other documents. Formally:

wi = tfi × idfi (1)

where tfi represents the occurrence frequency of the term ti in the
specific document, and idfi represents the inverse document
frequency, defined as:

 (2)
where |D| represents the number of documents and |{d: ti ∈ d}|
represents the number of documents that contain the i-th index
term. We use the above formulas to extract features from all bug
reports and change logs, and to compute the n dimension vector.
After obtaining the vector space model using TFIDF, we measure
the similarity between a bug report and a change log using the
Cosine similarity measure [9]:

€

Sim =
w1iw2i

i=1

n
∑

2w1i
i=1

n
∑ × 2w2i

i=1

n
∑

 (3)

It is expected that the linked bug reports and change logs share
certain text similarity, thus the larger the Cosine similarity
measure, the more a link is likely to be valid.

3.3 Learning Criteria of Features
In this section, we describe how we determine the thresholds of
features so that these features can characterize most of the real
links. Such thresholds can be treated as criteria for determining
links – if the features of an unknown link satisfy the criteria, the
link is likely to be valid. Otherwise it is irrelevant and should be
removed.

Determining the criteria of features is nontrivial. For example, a
lower threshold enables us to relate more fixed bugs and
committed changes, but the links identified contain more false

18

positives. On the other hand, a higher threshold can reduce false
positives, but less missing-links could be identified.

To determine the criteria of features, we learn from the explicit
links that can be identified through traditional heuristics (Le). For
the time interval feature and the text similarity feature, their
values vary independently. When these two features are applied to
Le, different values can result in selecting different sets of links
and lead to different F-measures. We propose a search-based
algorithm, which exhaustively searches for the optimal
combination of these two values so that the maximum F-measure
can be achieved. Figure 2 shows our algorithm for determining
the threshold values of these two features.
DetermineThresholds (Le: links between bugs and changes
identified by the traditional heuristics)
1 Assign the time interval T with a small initial value T0

2 Assign the text similarity threshold S with a small initial
 value S0

3 Select links in Le that satisfy T and S, and compute
 F-measure
4 Increase S by a small step s1
5 Repeat steps 3-4 until the maximum threshold Sm is reached
6 Increase T by a small step s2
7 Repeat steps 3-6 until T reaches the maximum threshold Tm

8 Choose the threshold values Tt and St that achieve the best
 F-measure (if ties exist, choose the first occurrence of
 Tt and St)

9 Return Tt and St

Figure 2: Determining the thresholds of features
In our experimentation, we specify T0 =1, s2=1, and Tm = 30,
which means that we try the time interval from 1 day to 30 days.
We specify S0 =0, s1=0.01, and Sm = 1, which means that we try
from text similarity 0 to 1, with steps of 0.01. In total, our
algorithm executes at most 30*100 times, in which we search for
the combination of S and T that maximizes F-measure. Based on
the identified optimal values Tt and St, a criterion is formed: a link
is considered irrelevant if its time interval and text similarity
values are above the thresholds.

DetermineMappings (Le: links between bugs and changes
identified by the traditional heuristics)
1 Initialize the set of mappings M=Φ

2 For each link l in Le
3 For each mapping m between l’s change committer

 and bug commenter
4 If (m is not in M)
5 Add m to M
6 EndIf
7 EndFor
8 EndFor
9 Return M

Figure 3: Determining the mappings between bug owners and
change committer

We also learn the mappings between bug owners and change
committers from the explicit links identified by the traditional
heuristics. We extract all relationships between a bug commenter
and a change committer and form the mapping set. The algorithm
is described in Figure 3. The criterion for this feature is: a link is
considered irrelevant if none of its bug commenters is mapped to
its change committer.

3.4 Recovering the Missing Links
A large and evolving project tends to contain a lot of fixed bugs
and committed changes. This results in a large number of
potential links between bugs and changes. Furthermore, there are
also many types of relationships between bugs and changes (as
illustrated in Figure 4):
• one to one: one bug could be fixed by one change;
• many to many: one bug could be fixed by multiple changes,

and one change could fix multiple bugs
• no relationship: a change could be a non-bug fixing change,

thus it does not link to any bug.

Figure 4: The relationships between bugs and changes

1 Store all possible links between bugs and links in L
2 Initialize the set Lr =Φ

3 Mine links Le between bugs and changes using
 the traditional heuristics
4 DetermineThresholds (Le)
5 DetermineMappings(Le)
6 For each link l in (L – Le)

7 If there is mapping between l’s bug commenter and l’s
 change committer

8 If any of l’s bug comment time is within the time
 interval threshold Tt

9 If the text similarity between l’s bug report and
 change log is within threshold St
10 add l to Lr
11 EndIf
12 EndIf
13 EndIf
14 EndFor

15 Return Lr + Le
Figure 5: The ReLink algorithm

To automatically identify the links between bugs and changes, we
propose a link recovery approach, ReLink. ReLink is based on the
identified features. The algorithm of ReLink is described in Figure

19

5: we first determine the satisfaction criteria of features by
applying the algorithms described in Figures 2 and 3 (lines 3-5).
The criteria include the time interval between the bug-fixing time
and the change-commit time, the text similarity threshold, and the
mappings between the bug owners and the change committers.
ReLink automatically learns the criteria from the explicit links
that can be identified by traditional heuristics. For each unknown
link that cannot be identified by traditional heuristics (line 6),
ReLink checks if the link satisfies all criteria (lines 7-9). If it
satisfies, we consider it a valid link (line 10). After checking all
the unknown links, ReLink returns the recovered set of links
between bugs and changes (line 15). The overall process of
ReLink is also illustrated in Figure 6.

Figure 6: The overall process of ReLink

4. EVALUATION
This section presents evaluation results of ReLink.

4.1 Subject Projects and Experimental Setup
We investigated two projects as shown in Table 1. These two
projects (ZXing and OpenIntents) are highly active Android
projects hosted by Google Code. We collected their change logs
from the SVN repository and bug reports from the Google Code
issue tracking system. To obtain the ground truth (the “golden set”)
of the links, we manually read change logs, bug reports, and the
corresponding code changes to establish links between changes
and bug reports. The manual annotation was performed by two
people: one identifying the links and the other verifying the
results.

We also experimented with the Apache dataset that was provided
by Bachmann and Bird et al. [6]. In the Apache dataset, the links
between defects and bugs were manually annotated by an Apache
core developer (Justin Erenkrantz) using the LINKSTER tool [6].
We treated this dataset as a “golden set” and used it to evaluate
the performance of ReLink.
To further evaluate the performance of ReLink when the bug IDs
are absent from change logs, we conducted a simulation study as
follows: we first collect a high quality dataset with most of the
links identified, and then intentionally remove bug IDs in 50% of
the change logs. Traditional heuristics fail to identify the links

associated with these changes due to the absence of the bug IDs.
We evaluate the performance of ReLink on recovering these
missing links. We choose the Apache project and the Eclipse
Memory Analyzer (MAT)5 project in this simulation experiment
as they have a high percentage of linked bugs. To overcome the
randomness introduced by the 50% sampling, we perform the
simulation experiment 10 times and compute the average results.

To facilitate the experiments, we have developed a tool for
ReLink. The tool automatically collects information from source
code repository and bug tracking system, builds the links between
bugs and changes, and outputs the identified links. It is developed
in Java, and runs on Windows and Linux. It consists of more than
10K lines of code.

4.2 Evaluation Metrics
Our experiments can lead to four kinds of results: a link we
identify is a true link (TP), a link we identify is not a true link
(FP), a link we miss is a true link (FN), and a link we miss is not a
true link (TN). We use Recall, Precision, and F-measure as
evaluation metrics. The definitions of these metrics are as follows:

 Precision =

€

TP
TP + FP

This metric indicates how accurate the experiment result is.

 Recall =

€

TP
TP + FN

This metric indicates the coverage of the experiment result.

 F-measure =

€

2× Precision × Recall
Precision + Recall

This metric takes the precision and the recall into consideration. It
is a combined metric. In this study, we adopt the F1 metric, which
weights precision and recall equally [32].

4.3 Evaluation Results
4.3.1 Comparisons to the Golden Set
Table 3 shows the experimental results for the three projects we
investigated.

The ZXing project contains 135 fixed bugs. For the traditional
approach, we adopted the heuristics proposed by Bachmann and
Bernstein [5] and identified links for 57 (42.2%) fixed bugs
without any false positives. Our approach, ReLink, identified
links for 95 (70.4%) fixed bugs with 10% false positives. In
ZXing, there are 143 links between bugs and changes. ReLink can
successfully identify 107 links among them, leading to a Recall of
74.8%, which is much higher than that achieved by the traditional
heuristics. The precision of ReLink is 0.9, which is marginally
lower than that of the traditional approach. In terms of the
F-measure, ReLink also outperforms the traditional approach
(0.820 vs. 0.651).

For OpenIntents project, the percentage of linked bugs found by
ReLink is 4% more than that of the traditional heuristics. There
are 129 links between bugs and changes in the project. ReLink
successfully recovered 95 of them. Compared to the traditional
heuristics, the Recall is improved by almost 10%. Both
approaches can achieve high precisions, with ReLink resulting in
a better overall F-measure.

5 http://www.eclipse.org/mat/

20

Table 3: Evaluation results
Recovery Links Project Period Revisions

#Fixed
Bugs

Approach %
Linked
Bugs

Precision Recall F-measure

Traditional 42.2% 1.0
（69/69）

0.482
(69/143)

0.651 ZXing 11/2007-
12/2010

1-1694 135

ReLink 70.4% 0.90
(107/118)

0.748
(107/143)

0.820

Traditional 69.3% 1.0
(87/87)

0.674
(87/129)

0.805 OpenIntents 12/2007-
12/2010

1-2890

101

ReLink 73.3% 1.0
(95/95)

0.731
(95/129)

0.847

Traditional 77.1% 0.746
(791/1060)

0.764
(791/1035)

0.755 Apache 11/2004-
4/2008

76294-
899841

686

ReLink 89.8% 0.747
(904/1210)

0.873
(904/1035)

0.805

Traditional 38.2% 0.741 0.375 0.498 Apache
Simulation

11/2004-
4/2008

76294-
899841

686
ReLink 53.0% 0.682 0.523 0.592

Traditional 49.1% 1 0.418 0.582 Eclipse MAT
Simulation

4/2008-
2/2011

10-1070 108
ReLink 96.3% 0.858 0.623 0.718

For Apache project, the golden set identified by the Apache
developer contains 1035 links between bugs and changes. ReLink
successfully recovered 904 links, while the traditional heuristics
recovered only 791 links. ReLink improves the Precision as well,
leading to a better F-measure (0.805).

The experimental results confirm that ReLink can achieve better
overall performance than the traditional heuristics.

4.3.2 Simulation Study
For the Apache simulation study, traditional heuristics lead to an
average recall of 0.375 due to the removal of bug IDs from 50%
of change logs. ReLink can achieve a much higher recall of 0.523.
This is because ReLink uses feature criteria to identify links.
Overall, the traditional heuristics lead to F-measure 0.498, while
ReLink achieves F-measure 0.592.

For the Eclipse MAT simulation study, traditional heuristics lead
to a low recall of 0.418 due to the removal of bug IDs from 50%
of change logs. ReLink can achieve a much higher recall of 0.623.
Overall, the traditional heuristics lead to F-measure 0.582, while
ReLink achieves F-measure 0.718, a significant improvement.

For the simulation studies, Table 3 only shows the average results
of 10 simulations. We also performed the paired-sample t-test to
check if the F-measures with ReLink were statistically
significantly better than the traditional heuristics. The t-test results
confirmed that ReLink can lead to better F-measures than the
traditional heuristics, at significance level 0.01. All simulation
results confirm that ReLink can recover links with reasonable
accuracy.

4.4 Discussion
Traditional heuristics identify links for a certain percentage of
bugs, but they fail to identify links for the bugs that have no bug
ID references in committed changes. As our experimental results
show, ReLink is more effective to recover the links between bugs
and changes than the traditional heuristics. ReLink can
significantly reduce false negatives (missing links) – Table 3
shows that the recall values of ReLink are 6%-26% higher than
those of traditional heuristics. The higher recall values are
achieved because ReLink can identify links even the bug IDs are

missing from the change logs, or the bug reference formats are
irregular. Unlike traditional heuristics, ReLink does not use
regular expressions to search for links. Instead, it identifies
features of links and checks the satisfiability of unknown links.
The performance of ReLink (measured in terms of F-measure) is
better than that of traditional methods for all studied projects.

Still ReLink may introduce false negatives. For example, Table 3
shows that ReLink missed 25.2% of links in ZXing and 26.9%
links in OpenIntents. We found two major reasons for false
negatives. One reason is that there are no similar keywords
between bug reports and change logs for some links, causing very
low text similarity. Thus ReLink discards these links as irrelevant.
The other reason is that some bugs have long intervals between
the change-commit time and the bug-fixing time. As a result,
these bugs fail to satisfy the time interval threshold. Figure 7
shows such an example in OpenIntents. The change for fixing the
bug 217 was committed on Aug 22, 2009. The status of the bug
217 was not updated to “Fixed” until Sep 22, 2009. Note that, all
these missing links are not identifiable by traditional heuristics
either.

Change Log (Revision: 2293; Author: rmceoin; Date: Aug 22,
2009)
OI Safe: large patch, added Search activty, completely redid
autolock, added preference 'Lock on screen lock' with default of
true.…
--
Bug Report (Issue 217; Status: fixed):
What steps will reproduce the problem?
1: Unlock OI Safe…
2: Leave screen on PassEdit
…
After step 6, screen should auto-lock.

Comment 1 by project member rmceoin@gmail.com,Mar 10,2009
…Also fails with PassView.

Comment 2 by project member rmceoin@gmail.com,Sep 22,2009
…Status: Fixed

Figure 7: An example of false negative cases

21

Change Log (Revision: 99398; Author: trawick; Date: Apr 17,
2003)
merge this fix into 2.0.46-dev:\n\n … PR 18649
[Justin Erenkrantz, Jeff Trawick]

Bug Report (bug 18649; Status: closed):
…enable-layout broken in 2.0.45. In 2.0.45, --enable-layout no
longer works…

Figure 8: An example of false positive cases

Bachmann et al. [6] also discovered that, some bugs in Apache
projects are actually “bugs incognito”, i.e., these bugs were only
discussed in developer mailing list and were not stored/tracked
using bug track systems. Like traditional heuristics, ReLink
cannot discover links for this type of bugs either. Mining mailing
lists and recovering more links remain as future work.
ReLink may also introduce false positives. We manually
examined these false positives in Table 3. We found that the false
positives of ReLink in the Apache project overlapped largely with
those identified by traditional heuristics. These links were
incorrectly identified due to reasons such as merge of changes.
Figure 8 shows an example of false positive case in Apache
introduced by the merge of changes. Revision 99398 was actually
a merge of the bug fix (PR 18649) found in version 2.0.45 into a
new version (2.0.46).

There are ways to reduce ReLink’s number of false positives. For
example, we can modify the ReLink algorithm (before line 15 in
Figure 5) to let it double-check the links Le mined by the
traditional heuristics - if a link l in Le does not satisfy the feature
criteria, ReLink considers l an irrelevant link and removes it. We
have compared the performance of the revised ReLink (called
ReLink-), ReLink and traditional heuristics for the Apache project.
The results are shown in Figure 9. ReLink- can achieve better
precision than the other two methods. However, the recall of
ReLink- is lower because of the tradeoff between recall and
precision. Overall, ReLink-’s F-measure is better than that of the
traditional heuristics, but slightly worse than ReLink.
Investigating techniques that can further reduce the number of
false positives and at the same time improve the recall value will
be our important future work.

Figure 9: The performance of ReLink-

5. Practical Effects of ReLink
We have shown that ReLink can identify the links between bugs
and changes more accurately than the traditional heuristics. The
immediate next question would be the practical effects of the

results. In this section, we show the implications of our results on
software maintenance studies, especially on maintainability
measurement and defect prediction.

5.1 Implications of Results on Maintainability
Measurement
Many maintenance metrics have been proposed to understand
maintenance activities and measure software maintainability. For
example:
• The percentage of bug-fixing changes [15, 16, 21]: changes

can be classified into many categories such as corrective
changes (for bug fixing), adaptive changes (e.g., for
accommodating new features), and perfective changes (e.g.,
for refactoring). Knowing the percentage of bug-fixing
changes can help understand maintenance efforts spent on
bug-fixing activities.

• The percentage of buggy files [33]: this is the percentage of
defective files (files containing at least one bug). It can help
measure software quality.

• Mean Time to Fix [22]: this is to measure the average time a
team spends on fixing a bug. It can help measure a
maintenance team’s bug-fixing ability. The time spent for
fixing a bug is calculated as the interval between bug report
open time and bug-fixing change commit time.

Table 4. The comparisons of measurement data

Project Linking
approaches

%Bug-fixing
changes

%Buggy
files

Mean
Time to

Fix(days)
Golden 8.1%

(138/1694)
29.6%

(118/399)
7.5

Traditional 4.0%
(67/1694)

14.8%
(59/399)

10.2

ZXing

ReLink 6.3%
(107/1694)

20.8%
(83/399)

7.3

Golden 4.2%
121/2890

4.9%
(36/742)

25.1

Traditional 2.9%
(83/2890)

2.6%
(19/742)

21.2

OpenIntents

ReLink 3.3%
(94/2890)

4.0%
(30/742)

25.1

Golden 2.3%
(976/43167)

50.5%
(98/194)

159.7

Traditional 1.7%
(753/43167)

47.9%
(93/194)

178.9

Apache

ReLink 2.0%
(866/43167)

52.1%
(101/194)

153.9

These metrics can be derived from the links between bugs and
changes. After identifying the links, we know which bugs/changes
are linked and which are not. Therefore we can collect the
corresponding data and compute the metrics. As the quality of
links collected by ReLink is higher than that collected by the
traditional heuristics, we can obtain better measurement data for
the above-mentioned metrics. Table 4 shows the measurement
data we collected for the studied projects using the traditional
heuristics and ReLink. We can see that the measures derived from
links obtained by ReLink are closer to the actual ones, while the
measures obtained by traditional heuristics contain larger
discrepancies. For example, for ZXing, the actual percentage of
bug-fixing changes is 8.1%. The measures derived from ReLink

22

and traditional heuristics are 6.3% and 4.0% respectively. The
ZXing team’s actual mean time to fix value is 7.5 days per bug.
The measures derived from ReLink and traditional heuristics are
7.3 and 10.2 respectively. Clearly ReLink leads to more accurate
measurement, thus it helps project teams better understand and
plan their maintenance activities.

5.2 Defect Prediction with Relink
To measure the impact of ReLink on software defect prediction,
we built commonly-used file level defect prediction models using
defect data collected from traditional heuristics and ReLink, and
measured the performance of the models to predict ground truth
defects.

5.2.1 Data Collection
We collected metric data and defect data for the studied projects,
and built a classification model to predict the defect-proneness of
the files. The metric data includes file-level static code complexity
measures collected by the Understand for Java/Understand for
C++ tool6, such as lines of code, cyclomatic complexity, average
lines of comments, etc. The defect data contains buggy instances
(files) collected through analyzing the identified links between
bugs and changes.

The buggy and clean labels are assigned based on links between
change logs and bugs. If a commit is linked to a bug, we assume
the files in the commit are buggy. To label files, we use the links
obtained from three different approaches: traditional heuristics,
ReLink, and the ground truth. Table 5 summarizes the datasets
used in this experiment. The datasets contain different percentages
of buggy files. For example, the ZXing project contains 399 files,
among which 29.6% of the files are buggy in the “Golden”
(ground truth) dataset, 14.8% files are buggy in the “Traditional”
dataset, and 20.8% files are buggy in the “ReLink” dataset.

Table 5. Defect Prediction Dataset

Subject Version # of
files

of
metrics

Linking
approaches

% of
buggy

Traditional 14.8%
ReLink 20.8%

ZXing

1.6 399 41

Golden 29.6%
Traditional 10.7%

ReLink 28.6%
Open-
Intents

Revision
1088~2073

56

41

Golden 39.3%
Traditional 57.2%

ReLink 46.9%
Apache 2.0 194

60

Golden 50.5%

5.2.2 Prediction and Evaluation Models
After collecting the metric data and buggy labels, we built a
classification model using a popular machine-learning algorithm,
Decision Tree (J48 in the Weka implementation [31, 32]).

We adopted the 10-fold cross validation technique to train and
evaluate the model. When the 9-fold is used as a training set, we
used the labels from three datasets: Traditional, ReLink, and
Golden. However, for the 1-fold (test set), we used the labels
obtained from the Golden set, which are manually recovered

6 http://www.scitools.com/

ground truth links (Figure 10). Note that the ultimate goal of
defect prediction is to identify ground truth (actual) defects.

Since the performance may vary based on instances in each fold,
we ran this 10-fold cross validation model 100 times (100
10-fold), and computed the average performance. To measure the
prediction model’s performance, we used the standard measures
such as Precision, Recall, and F-measure [32].

5.2.3 Results
Table 6 presents the prediction results using three different
approaches. The prediction performance of using ReLink is much
better than that of using traditional heuristics. For example, the
F-measure with Traditional is 0.257 for OpenIntents, while the
F-measure with ReLink is 0.706, a significant improvement.
Similarly, for ZXing, the F-measure with ReLink is 0.325, while
F-measure with Traditional is only 0.171. For Apache, ReLink
also improved the prediction accuracy.

We have also performed the paired-sample t-test to check if the
improvements in F-measures are statistically significant. The t-test
results confirmed that they are statistically significant, at the 99%
confidence level (p-value < 0.01).

Figure 10: An example of false positive cases

Table 6. Prediction Results (Decision Tree)

Subject Linking
approaches

Precision Recall F-measure

Traditional 0.346 0.114 0.171
ReLink 0.432 0.261 0.325

ZXing

Golden 0.476 0.435 0.454
Traditional 0.405 0.188 0.257

ReLink 0.779 0.645 0.706
Open-
Intents

Golden 0.742 0.683 0.711
Traditional 0.672 0.727 0.698

ReLink 0.716 0.748 0.731
Apache

Golden 0.709 0.713 0.711

These results clearly indicate that the defect information collected
by ReLink improves the defect prediction performance. However,
we noticed that the improvement varies across projects. For
example, ReLink significantly improved the prediction accuracy
of ZXing, while the improvement of Apache seems marginal.
There are a few possible explanations for these results. First, as
we showed in Table 3, the quality of Apache change logs is
decent. As a result, traditional heuristics can mine links with
reasonable accuracy. Basically, the quality of Apache defect
information derived by traditional heuristics and that by ReLink
do not have huge differences. Note that ReLink is still able to
improve the prediction accuracy because of the more accurate
defect information derived.

ReLink significantly improved the prediction performance of
OpenIntents. As we showed in Table 3, ReLink is able to recover

testing setReLink X X X X X X X X X X

X X
X

X

X: buggy labelled
instance

Ground
truth

X X X X XTraditional
heuristics

X X X X X X X X X XX
XX X

X X X XXX X

Training sets

1

2

3

23

many links missed by traditional heuristics. In addition, the
number of instances of OpenIntents is small. As we also found in
a recent study [18], prediction models for a subject with a small
number of instances are more sensitive to noise. Since ReLink
provides much accurate defect information, the prediction
performance of OpenIntents is significantly improved.

6. THREATS TO VALIDITY
There are potential threats to the validity of our work:

• For the two Android projects, the golden sets of links were
collected by us manually. To assure their quality, two people
were involved: one annotating the links and the other
verifying them. However, it is difficult to guarantee that the
golden sets do not contain any false negatives or false
positives. Even for the Apache dataset, which was manually
examined by an Apache core developer, its quality is not
completely assured because the developer may not recall all
bug-fixing activities happened several months or years ago.

• Our approach is based on the assumption that the
descriptions of bugs and committed changes are similar. In
our investigation, we found that many open source projects
hosted by Google Code follow the features we described.
However, for projects that do not satisfy the assumption, our
approach would be under threat.

• All datasets used in our experiments were collected from
open source projects. We need to evaluate the performance
of ReLink on commercial projects. This remains as future
work.

7. RELATED WORK
Real-world data are often noisy, which may affect interpretations
and models derived from the data. The data quality problem has
also been observed by some software engineering researchers. For
example, Mockus [20] noted that in many realistic scenarios the
data quality is low (e.g., some change data could be missing),
which could affect the outcome of an empirical study. Myrtveit et
al. [24] and Strike et al. [29] also noticed the problem of missing
and incomplete data in software effort estimation. In [1, 10, 11],
authors analyzed the quality of bug reports and change logs.
Liebchen and Sheppard [19] investigated the data quality issue
and found that among hundreds of software engineering papers
only four suggested that the data quality issue may affect their
analysis results. In this paper, we focus on software process data
and propose methods to improve data quality.

To improve the correctness of identified links between defects and
changes, Fisher et al. [13, 14] discussed the confidence of links.
They took file names specified in the bug tracking databases and
change logs into account. If the files exist in both of them, the
confidence of the links will be higher. Śliwerski et al. [28]
proposed to verify the links by semantic analysis. A link is valid if
it satisfies one of the conditions such as whether the bug has been
resolved as Fixed at least once, whether the short description of
the bug report is contained in the committed change log, etc.
Bachmann et al. [5] improved Fischer’s approach by excluding all
false-positive numbers that have a defined format. They validated
the linked bug report by checking the relationship between the
bug-fixing date and the change commit date.

Although many researchers proposed various kinds of approaches
to verify the links, the quality of the software process data is still

not good enough. Bachmann and Bird et al. [6, 7] showed strong
evidence that, only a fraction of bug fixes are explicitly labeled in
the source code repository, and there exist systematic biases in
finding the links. The bias could affect the effectiveness of the
studies based on the process data such as software defect
prediction. Nguyen et al. [25] also found that biases existed in a
commercial project (IBM Jazz) that enforced strict development
guidelines. In order to find the missing links, Bird et al. [8]
developed the tool “LINKSTER” to facilitate identification of
links manually. However, their tool requires manual effort, and
thus is difficult to scale up.

Our work is also related to the traceability analysis among
software artifacts. Many researchers have proposed information
retrieval (IR) based techniques to recover traceability links
between source code and text documents (such as development
journals, error logs, and emails) [2, 3, 4]. Runeson et al. [26] and
Wang et al. [30] applied IR techniques to compare text similarity
between two bug reports, thereby identifying potentially duplicate
bug reports. In our work, we apply IR techniques to compare text
similarity between bug reports and change logs, thereby
recovering traceability links between bugs and changes.

8. CONCLUSIONS AND FUTURE WORK
To automatically collect links between bugs and changes,
traditional heuristics look for explicit links to bugs in change logs.
Recent studies have shown that traditional heuristics could be
biased, since developers may not leave explicit links in change
logs. In this paper, we have proposed ReLink, an automatic link
recovery algorithm. ReLink is based on automatically learned
feature criteria from explicit links. Our experimental results have
shown that ReLink is able to recover links reliably. We have also
shown that the more accurate defect information collected by
ReLink has positive impacts on the follow-up software
maintenance studies, including defect prediction models.

Our experimental results confirm that defect information collected
using traditional heuristics should be used with caution. It is
desirable to use link recovery algorithms and to perform careful
inspection of the collected defect information. ReLink is the first
step toward this direction.

In future more research on recovering links is needed in order to
obtain more accurate defect data. We will also apply our approach
to industrial projects to evaluate its usefulness.

Our tool and the experimental data used in this paper are available
at:

http://www.cse.ust.hk/~scc/ReLink.htm

ACKNOWLEDGEMENTS
This research is supported by the Hong Kong RGC/GRF grant
612108, the NSFC grant 61073006, and the Tsinghua University
research project 2010THZ0. We thank Christian Bird for
providing us with the annotated Apache dataset, and Lichao Liu
for validating the golden set data for Android projects.

REFERENCES
[1] J. Aranda and G. Venolia. The secret life of bugs: Going

past the errors and omissions in software repositories. In
ICSE’09, pages 298–308, May 2009.

24

[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E.
Merlo. 2002. Recovering Traceability Links between Code
and Documentation, IEEE Trans. Softw. Eng. 28, 10
October 2002, 970-983.

[3] A. Bacchelli, M. D'Ambros, M. Lanza, R. Robbes,
Benchmarking Lightweight Techniques to Link E-Mails and
Source Code. In WCRE’09, Lille, France, pp. 205-214, Oct
2009.

[4] A. Bacchelli, M. Lanza, and R. Robbes, Linking e-mails and
source code artifacts. In ICSE '10, Vol. 1. ACM, New York,
NY, USA, 375-384.

[5] A. Bachmann and A. Bernstein. Software process data
quality and characteristics - a historical view on open and
closed source projects. In IWPSE-Evol'09, pages 119-128,
Amsterdam, The Netherlands, August 2009.

[6] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A.
Bernstein, The Missing Links: Bugs and Bug-fix Commits.
In FSE’10, 97-106, Santa Fe, New Mexico, USA, Nov
2010.

[7] C. Bird, A. Bachmann, E.Aune, J. Duffy, A. Bernstein,
V.Filkov, and P. Devanbu, Fair and balanced?: bias in
bug-fixing datasets. In ESEC/FSE'09, Aug. 2009, 121-130.

[8] C. Bird, A. Bachmann, F. Rahman, and A. Bernstein,
LINKSTER: enabling efficient manual inspection and
annotation of mined data. In FSE’10, 369-370, Santa Fe,
New Mexico, USA, Nov 2010.

[9] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval, Addison Wesley, 1999.

[10] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim.
Duplicate bug reports considered harmful... really? In
ICSM’08, pages 337–345, October 2008.

[11] K. Chen, S. R. Schach, L. Yu, J. Offutt, and G. Z. Heller.
Open-source change logs. Emp. Softw. Eng., 9(3):197–210,
2004.

[12] C. Fellbaum, WordNet: An Electronic Lexical Database,
Cambridge, MA: MIT Press, 1998.

[13] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating
bug report data for feature tracking. In WCRE'03, pages
90-99, Victoria, Canada, November 2003.

[14] M. Fischer, M. Pinzger, and H. C. Gall. Populating a release
history database from version control and bug tracking
systems. In ICSM'03, pages 23-32, Amsterdam, Netherlands,
September 2003.

[15] A. Hindle, D. M. German, R. C. Holt: What do large
commits tell us?: a taxonomical study of large commits. In
MSR 2008, pp. 99-108, May 2008.

[16] S. Kim, T. Zimmermann, K. Pan and E. Whitehead Jr.,
Automatic Identification of Bug-Introducing Changes. In
ASE’06, Tokyo, Japan, September 2006.

[17] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller.
Predicting faults from cached history. In ICSE’07, pages
489–498, Washington, DC, USA, 2007.

[18] S. Kim, H. Zhang, R. Wu and L. Gong, Dealing with Noise
in Defect Prediction. In ICSE'11, Honolulu, Hawaii, USA,
May 2011.

[19] G. Liebchen and M. Shepperd. Data sets and data quality in
software engineering. In PROMISE’08, 39–44, May 2008.

[20] A. Mockus, Missing Data in Software Engineering,
Empirical Methods in Software Engineering. The MIT Press,
2000.

[21] A. Mockus and L. G. Votta, Identifying Reasons for
Software Changes Using Historic Databases. In ICSM 2000,
San Jose, CA, USA, 2000, pp. 120-130.

[22] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache and
mozilla. ACM Trans. Softw. Eng. Methodol., 11(3):309–346,
2002.

[23] A. Murgia, G. Concas, M. Marchesi, R. Tonelli, A machine
learning approach for text categorization of fixing-issue
commits on CVS. In ESEM 2010, Bolzano-Bozen, Italy, Sep
2010.

[24] I. Myrtveit, E. Stensrud, and U. H. Olsson. Analyzing Data
Sets with Missing Data: An Empirical Evaluation of
Imputation Methods and Likelihood-Based Methods. IEEE
Trans. on Software Engineering, 27(11), pp.999-1013, 2001.

[25] T. H. D. Nguyen, B. Adams, A. E. Hassan, A Case Study of
Bias in Bug-Fix Datasets. In WCRE’10, pp. 259-268.

[26] P. Runeson, M. Alexanderson, O. Nyholm, Detection of
Duplicate Defect Reports Using Natural Language
Processing. In ICSE’07, 499-510, May 2007.

[27] A. Schroter, T. Zimmermann, R. Premraj, and A. Zeller. If
your bug database could talk... In ICSE’06, pages 18–20,
Rio de Janeiro, Brazil, September 2006.

[28] J. Sliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In MSR'05, pages 24-28, Saint Louis,
Missouri, USA, May 2005. ACM.

[29] K. Strike, K. E. Emam, and N. Madhavji. Software Cost
Estimation with Incomplete Data. IEEE Trans. on Software
Engineering, 27(10), pp.890-908, 2001.

[30] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, An
approach to detecting duplicate bug reports using natural
language and execution information. In ICSE'08, pages
461-470, Leipzig, Germany, 2008

[31] WEKA: http://www.cs.waikato.ac.nz/ml/weka/
[32] I.H. Witten and E. Frank, Data Mining: Practical Machine

Learning Tools and Techniques with Java Implementation,
second ed., Morgan Kaufmann, 2005.

[33] T. Zimmermann, R. Premraj, and A. Zeller. Predicting
defects for eclipse. In PROMISE'07, pages 1-9, Minneapolis,
Minnesota, USA, May 2007.

[34] T. Zimmermann and P. Weissgerber. Preprocessing cvs data
for Fine-grained analysis. In MSR'04, pages 2-6, Edinburgh,
Scotland, UK, May 2004.

[35] H. Zhang and R. Wu, Sampling Program Quality, Proc.
ICSM 2010, Timisoara, Romania, Sep 2010, pp. 1-10.

[36] H. Zhang, An Investigation of the Relationships between
Lines of Code and Defects. In ICSM’09, Edmonton, Canada,
September 2009, pp. 274-28.

25

