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ABSTRACT 
Software defect information, including links between bugs and 
committed changes, plays an important role in software 
maintenance such as measuring quality and predicting defects. 
Usually, the links are automatically mined from change logs and 
bug reports using heuristics such as searching for specific 
keywords and bug IDs in change logs. However, the accuracy of 
these heuristics depends on the quality of change logs. Bird et al. 
found that there are many missing links due to the absence of bug 
references in change logs. They also found that the missing links 
lead to biased defect information, and it affects defect prediction 
performance.  
We manually inspected the explicit links, which have explicit bug 
IDs in change logs and observed that the links exhibit certain 
features. Based on our observation, we developed an automatic 
link recovery algorithm, ReLink, which automatically learns 
criteria of features from explicit links to recover missing links. 
We applied ReLink to three open source projects. ReLink reliably 
identified links with 89% precision and 78% recall on average, 
while the traditional heuristics alone achieve 91% precision and 
64% recall. We also evaluated the impact of recovered links on 
software maintainability measurement and defect prediction, and 
found the results of ReLink yields significantly better accuracy 
than those of traditional heuristics.  

Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement–Restructuring, reverse engineering, and 
reengineering, D.2.8 [Software Engineering]: Metrics – Product 
metrics 

General Terms 
Bias, Measurement, Experimentation 

Keywords 
Mining software repository, missing links, data quality, bugs, 
changes. 

1. INTRODUCTION 
Software defect information, including links between bug reports 
in bug tracking system and committed changes in source code 
repository, is the key information for software maintenance such 
as measuring software quality and predicting defects. It is possible 
to understand software maintenance efforts based on quality 
metrics derived from the links between bugs and changes, such as 
the percentage of buggy files [22, 33]. Defect information is also 
used to train models for defect prediction [17, 18, 33, 35, 36]. 

To collect links between bugs and changes automatically, many 
researchers mine bug reports in bug tracking systems and change 
logs in version archives. Heuristics traditionally used include 
searching for keywords (such as "Fixed" or "Bug") and bug IDs 
(such as “#42233”) [5, 21, 27, 28, 33, 34] in change logs. 

Recent studies revealed that these heuristics likely yield biased 
defect data, since they primarily rely on the comments in change 
logs [6, 7, 25]. Developers often maintain high quality change 
logs, but it is possible that they omit bug references in change logs. 
For example, when a developer fixes a bug in a revision, she may 
not document the fixed bug ID in the change log. Then, traditional 
heuristics miss the links between the bug and the change. As a 
result, defect information collected by traditional heuristics 
includes bias, especially lots of false negatives – missing links. 
Bird and Bachmann et al. confirmed this problem and reported 
that 54% of fixed bugs in the bug database are not linked to 
change logs [6, 7]. 
Unfortunately, these biased defect data affect software quality 
measurement and defect prediction performance. Bird et al. found 
that the BugCache algorithm [17] is sensitive to the biased data 
[7]. Kim et al. found that the change classification algorithm [16] 
is also sensitive to the biased data [18] when the number of 
instances is small. It is desirable to collect more accurate defect 
information by recovering the missing links.  

To explore possibilities of recovering the missing links 
automatically, we conducted a qualitative study to identify 
characteristics of explicit links based on the bug IDs in change 
logs. We found that the links between bugs and changes exhibit 
certain features. For example, the bug-fixing time is close to the 
change-commit time, the change logs and the bug reports share 
textual similarity, and the developers responsible for a bug are 
typically the committers of the bug-fixing change.  

Based on these findings, we propose an automatic link recovery 
algorithm, ReLink. Relink automatically learns satisfaction 
criteria of features from explicit links, and by applying the learned 
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criteria it checks if the features of an unknown link satisfy the 
criteria. If the unknown link satisfies all the feature criteria, it is 
considered a valid link.    

We have applied ReLink to three open source projects (ZXing, 
OpenIntents, and Apache) and two simulation studies (on Apache 
and Eclipse MAT). We have evaluated the recovered links by 
comparing them to the ground truth links, which are manually 
recovered and verified links. Our experimental results are 
promising: on average, for the three open source projects, ReLink 
recovered links with 78% recall and 89% precision, while the 
traditional heuristics can only identify links with 64% recall and 
91% precision.  

We have also evaluated the practical impact of defect information 
obtained by ReLink. We measured the effects of ReLink on 
several software maintainability metrics. We also built defect 
prediction models using defect information with/without ReLink. 
Our experimental results indicate ReLink has nontrivial positive 
impacts on the maintenance studies. 
In summary, our paper makes the following contributions: 

• We propose ReLink, an automatic link recovery algorithm. 
We also report our experimental evaluation of ReLink. 

• We report an empirical study on measuring the impact of 
recovered links on maintenance studies, especially on 
software defect prediction. 

The remainder of this paper is organized as follows. In Section 2, 
we describe the traditional heuristics for mining links and their 
main challenges. In Section 3, we present ReLink, the proposed 
approach to mining links. We evaluate the performance of ReLink 
in Section 4 and its practical effects on software maintenance 
studies in Section 5. Sections 6 and 7 discuss the threats to 
validity and the related work respectively. We conclude the paper 
in Section 8. 

2. MINING LINKS: TRADITIONAL 
HEURISTICS 
This section reviews the use of traditional heuristics to mine the 
links between bugs and changes. In addition, we evaluate the 
quality of links mined with traditional heuristics, and discuss the 
involved challenges.  

2.1 Traditional Heuristics 
During software maintenance, it is common that changes and bugs 
are recorded in version control systems (such as CVS and SVN) 
and bug tracking systems (such as BugZilla), respectively. 
Developers often maintain change logs describing what they have 
changed and what bugs they have dealt with.  

Traditional heuristics to identify bug-fixing changes rely on the 
premise that developers leave hints or links about bug fixes in the 
change logs. They look for specific keywords such as ‘fixed’, 
‘bug’, and for information linking to bugs such as bug ID 
references in change logs. These traditional heuristics are widely 
used to mark bug fixes, identify bug-introducing changes, and 
build defect prediction models [5, 14, 16, 21, 27, 28, 33, 34].      

However, the results of traditional heuristics largely rely on the 
change log quality. Recently, Bird et al. [7] noticed that, only a 
fraction of bug fixes are labeled in change logs explicitly, and this 
causes systematic biases in finding the links. The biases can 
significantly reduce the effectiveness of the follow-up studies. To 

overcome this challenge, Bird et al. [8] developed a manual link 
recovery tool, LINKSTER. The manually recovered links might 
be much more accurate. However, the practice does not scale 
because it requires significant manual effort. 

2.2 Evaluation of Traditional Heuristics 
To evaluate traditional heuristics and measure the number of 
missing links, we performed a replication study of Bird et al.’s [7] 
on two Android open source projects. In this study, we adopted 
the traditional heuristics proposed by Bachmann and Bernstein 
[5]: 

1) Scan through the change logs for bug IDs in a given format 
(e.g. “issue 681”, “bug 239” and so on). 

2) Exclude all false-positive bug numbers (e.g.  “r420”, 
“2009-05-07 10:47:39 -0400” and so on). 

3) Check if there are other potential bug number formats or 
false positive number formats, add the new formats and scan 
the logs iteratively. 

4) Check if potential bug numbers exist in the bug-tracking 
database with their status marked as fixed. 

Based on these heuristics we mined the links between change logs 
and bug reports. Then, we measured the number of fixed bugs 
successfully linked to change logs, as well as the number of links 
identified.  

The two projects, ZXing1 and OpenIntents2, which we studied are 
highly active Android projects. ZXing is a barcode 
image-processing library for Android-based phones, and 
OpenIntents is an open intents library. Table 1 shows the results 
of the replication study. For ZXing, only 40.7% (55 out of 135) of 
the fixed bugs were found linked to change logs and 48.2% of the 
links were identified. Similarly, only 54 out of 101 bugs were 
linked to change logs for OpenIntents and 67.4% links were 
identified. Our results are consistent with Bird et al.’s results for 
Apache project [6]. They showed that 256 out of 559 (46%) bugs 
were linked and there were many missing links. In the next 
section, we briefly discuss the reasons of having missing links and 
the challenges of using traditional heuristics. 

Table 1: Linking results of the traditional heuristics 
Project Revi- 

sions 
# Fixed 

Bugs 
％Linked 

Bugs 
# 

Links 
% Links 
Identified 

ZXing 1-1694 135 40.7% 143 48.2% 
OpenIntents 1-2890 101 53.5% 129 67.4% 

2.3 Challenges 
As shown in Table 1, there is a large number of bugs that cannot 
be linked to the committed changes by traditional heuristics. 
However, the results do not necessarily mean these bugs are not 
associated with any committed changes. We manually 
investigated the unlinked bugs and identified the following 
reasons that cause missing links: 
Missing bug reference in change logs  
Since leaving explicit bug reference in change logs is optional to 
developers, it is possible that developers do not write related bug 
IDs after they have fixed bugs. In this case, traditional heuristics 
fail to identify links between change logs and bugs. For example, 
                                                                    
1 http://code.google.com/p/zxing/ 
2 http://www.openintents.org/ 
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consider the change log3 and the bug report4 in Figure 1, which 
are taken from the ZXing project. There are no bug ID references 
in the change log therefore traditional heuristics cannot identify 
which bug the revision 148 has fixed.  

However, our manual examination found that this change log can 
be actually linked to a bug report: we searched through all bug 
reports and found that the bug report #18 contained similar 
problem descriptions as the change log. Also, we noticed that 
there was a bug-fixing comment made for bug #18 on Jan 22, 
2008, by the developer “srowen@gmail.com”. The revision #148 
was also committed on Jan 22, 2008 by the author “srowen”. 
Therefore, it is likely that the revision #148 is linked to bug #18 
(we also checked the source code and confirmed this link). The 
commonalities give an indicator of the link between the bug and 
the change. They provide clues to recover the missing link.  

Change Log (Revision: 148; Author: srowen; Date: Jan 22, 2008) 
Name of midlet is "ZXingMIDlet", not "ZXingMidlet"! 
-------------------------------------------------------------------------------- 
Bug Report (Issue 18; Status: Fixed): 
Reported by herf...@yahoo.com, Jan 11, 2008 
Issue 18: does not work on nokia 5300  
 
Comment 1 by project member srowen@gmail.com, Jan 11, 2008 
Which version, regular or basic? … 
…  
Comment 3 by herf...@yahoo.com, Jan 12, 2008 
I tested both of them (regular and basic) but in both case it just 
make an exception… 
… 
Comment 5 by project member srowen@gmail.com, Jan 22, 2008 
…The class is called "ZXingMIDlet" but the exception mentions 
"ZXingMidlet" (note different capitalization). It looks like the 
manifest file I wrote gets this wrong. … 
 
Comment 6 by project member srowen@gmail.com, Jan 22, 2008 
I think I have fixed this particular problem by correcting… 
Can you try the most recent version from… 
 

Figure 1: An example of missing links 
Irregular bug reference formats  
The traditional heuristics, such as Bachmann and Bernstein’s 
approach [5], search for patterns in change logs using regular 
expressions (e.g. “issue 681”, “bug 239” and so on). However, our 
manual examination found that developers used many different 
ways to give bug references in change logs, such as “solve 
problem 681”, “Fixed for #239”, “see #149”, “for Issue 143” 
(“Issue 143” is strikethrough and marked-up in HTML), etc. 
Developers may also occasionally make typos such as “fic 239” 
[23]. The format may even vary across change logs within the 
same project, as different open source contributors may have their 
own preferences. It is not easy to develop a single, generic tool to 
support all possible bug reference formats. 

The above analysis motivates us to develop a new link recovery 
algorithm. In our approach, we identify features of links between 
bugs and changes, and apply them to recover the missing links. 

                                                                    
3 http://code.google.com/p/zxing/source/detail?r=148 
4 http://code.google.com/p/zxing/issues/detail?id=18 

3.  RELINK: RECOVERING LINKS 
BETWEEN BUGS AND CHANGES  
In this section, we present ReLink, a new approach to recovering 
the links between bugs and changes.  

3.1 Features of Links 
Our approach is based on the identification of features of the links 
between bugs and changes. First, we identify explicit links, which 
are links that can be discovered by traditional heuristics. We then 
analyze the features of these links. Through this analysis, we have 
identified the following features, which can be later used to 
recover the missing links: 

Time Interval: This is the interval between the time (tf) when a 
bug was fixed as given by its bug report and the time (tc) when the 
corresponding bug fix was committed at the code repository. The 
interval (tf – tc) is a useful feature because it leverages the 
knowledge that a bug should be fixed after its creation and before 
its closure. After developers have committed the code change for 
a bug fix (at time tc), they are obliged to update the bug report (at 
time tf) that the bug has been fixed. Therefore, tf should be greater 
than but close to tc for a linked bug and its committed code 
change.  

Bug Owner and Change Committer: For linked bugs and 
changes, there exists a mapping between the bug owner and the 
change committer. Ideally, the committer who makes the 
bug-fixing changes should be the person who is responsible for 
fixing the bug. It is also possible that the change committer and 
the bug owner are different persons, but the mapping between 
them could be identified by mining the software repositories 
(which will be discussed in Section 3.2.2). 

Text Similarity: This is the textual similarity between bug reports 
and change logs. For linked bugs and changes, the natural 
language descriptions in the bug report are often similar to those 
in the change logs, as they may refer to the same issue and share 
similar keywords.  

3.2 Mining Features of Links 
3.2.1 The Interval between the Bug-fixing time and 
the Change-Commit Time 
Although the interval between bug-fixing time and the commit 
time is a useful feature for mining links, determining the length of 
such an interval is a nontrivial task. We observed from our 
empirical studies that developers do not always change the status 
of bugs to “Fixed” in the bug tracking system immediately after 
they have committed the bug-fixing changes. For example, we 
investigated the explicit links of the ZXing project mined by 
traditional heuristics, and observed when developers change the 
bugs’ status to “Fixed” after the bug-fixing change is committed. 
We found that for 20% of explicit links, their bug-fixing time and 
change-commit time differ by more than one day. The bug-fixing 
time and the change-commit time could be far apart. Our first 
research challenge is therefore to determine the actual bug-fixing 
time from each bug report.  

With further investigations, we found that most bug comments are 
related to bug-fixing activities, as developers often post comments 
to the bug tracking system to report a bug fix and notify the bug 
reporter. Therefore, we could determine the bug-fixing time 
according to the time of comments in bug reports. For example, 
consider the change log and the bug report in Figure 1. The 
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revision #148 was committed on Jan 22, 2008. There was also a 
bug-fixing comment made for bug #18 on Jan 22, 2008, by the 
change committer (“srowen”).  

We also empirically verified the time interval feature using the 
explicit links. For ZXing and OpenIntents, on average, each bug 
received 2-3 comments. For more than 93% of the links, the 
intervals between bug-comment time and the change-commit time 
were less than 24 hours. For more than 96% of the links, the 
intervals were less than one week. The results indicate that in 
most cases, the change-commit time is close to a bug-comment 
time.  

3.2.2 Mapping between Bug Owners and Change 
Committers 
When bugs are assigned to a certain developer to fix, the 
developer information Pb is recorded by bug tracking systems. 
When bug-fixing changes are committed, the committer 
information Pc is recorded by version control systems. In our 
empirical studies, we compared the change committers and the 
bug report owners for linked bugs and changes. We found that 
they may not have the same names. This is because developers 
may use different login names in different scenarios. It is also 
possible that there is an appointed person in the team to confirm 
bug fixes and change bug status. Table 2 gives some examples for 
the identified mappings between committers and bug owners. 

Table 2: Examples of the mapping between bug owners and 
change committers 

Bug  
Owner Pb 

Change  
Committer Pc 

Project 

dswitkin@gmail.com dswitkin ZXing 
dswitkin@google.com dswitkin@google.com ZXing 

srowen@gmail.com srowen ZXing 
peli0101@googlemail.com peli0101 Openintents 

Will Rowe wrowe Apache 
Erik Abele erikabele Apache 

To identify the mappings between bug owners and change 
committers, we again examined the comments in bug reports. Our 
empirical studies found that developers often actively discuss 
bug-related issues and announce bug fixes via the bug tracking 
system. Therefore, it is likely that one of the commenters is the 
bug owner who is responsible for bug fixing. For example, in the 
ZXing project, for 99% of links that are found by traditional 
heuristics, the developers who committed bug-fixing changes 
posted bug comments in the bug tracking system. In the 
OpenIntents project, all developers who fixed bugs posted 
comments in the bug reports. 

3.2.3 The Similarity between Bug Reports and 
Change Logs 
Information Retrieval (IR) technology is commonly used to 
process textual documents in natural languages. In this project, we 
treat bug reports and change logs as texts and compare their 
similarities. 

It is expected that for linked bugs and changes, bug reports and 
change logs exhibit certain similarity. To compute the similarity 
between bug reports and change logs, we first extract text features. 
Our approach adopts the Vector Space Model (VSM), a widely 
used model in IR technology [9]. In VSM, a document is 
represented as an n dimension vector <w1, w2, w3,…wn>, where n 

is the number of distinct terms and wi (1≤ wi ≤ n) represents the 
weight of a unique term.  

One of the most important issues in text processing is to select 
appropriate terms to represent the entire documents. In our case, 
the number of terms in bug reports and change logs could be large. 
To select the representative terms, we use the following steps to 
help reduce dimensions: 

1) Remove stop words. Stop words are the words that have no 
strong meaning, such as “a”, “an”, “the” and so on.  

2) Use one term to represent all other terms that have the same 
stemmer. For example, the tokens “fixing”, “fixes”, and 
“fixed” all share the same root “fix”, thus we use “fix” to 
represent the others.  

3) Use one term to represent all synonymous words. We apply 
the tool WordNet [12] to facilitate the selection of the 
synonymous words. For example, according to the 
definitions in the WordNet dictionary, the words “additional” 
and “extra” are synonymous words, therefore we can replace 
“additional” with “extra”.  

After selecting the terms in bug reports and change logs, we then 
calculate the weight for each term. In our approach, we use Term 
Frequency-Inverse Document Frequency (TFIDF) metric [9] to 
calculate the weight. The basic idea of TFIDF is that the weight wi 
of a term in a document increases with its occurrence frequency in 
the specific document and decreases with its occurrence frequency 
in other documents. Formally: 

wi = tfi × idfi   (1) 

where tfi represents the occurrence frequency of the term ti in the 
specific document, and idfi represents the inverse document 
frequency, defined as: 

        (2) 
where |D| represents the number of documents and |{d: ti ∈ d}| 
represents the number of documents that contain the i-th index 
term. We use the above formulas to extract features from all bug 
reports and change logs, and to compute the n dimension vector.  
After obtaining the vector space model using TFIDF, we measure 
the similarity between a bug report and a change log using the 
Cosine similarity measure [9]: 

€ 

Sim =
w1iw2i

i=1

n
∑

2w1i
i=1

n
∑ × 2w2i

i=1

n
∑

   (3) 

It is expected that the linked bug reports and change logs share 
certain text similarity, thus the larger the Cosine similarity 
measure, the more a link is likely to be valid. 

3.3 Learning Criteria of Features 
In this section, we describe how we determine the thresholds of 
features so that these features can characterize most of the real 
links. Such thresholds can be treated as criteria for determining 
links – if the features of an unknown link satisfy the criteria, the 
link is likely to be valid. Otherwise it is irrelevant and should be 
removed.  

Determining the criteria of features is nontrivial. For example, a 
lower threshold enables us to relate more fixed bugs and 
committed changes, but the links identified contain more false 
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positives. On the other hand, a higher threshold can reduce false 
positives, but less missing-links could be identified.  

To determine the criteria of features, we learn from the explicit 
links that can be identified through traditional heuristics (Le). For 
the time interval feature and the text similarity feature, their 
values vary independently. When these two features are applied to 
Le, different values can result in selecting different sets of links 
and lead to different F-measures. We propose a search-based 
algorithm, which exhaustively searches for the optimal 
combination of these two values so that the maximum F-measure 
can be achieved. Figure 2 shows our algorithm for determining 
the threshold values of these two features.  
DetermineThresholds (Le: links between bugs and changes 
identified by the traditional heuristics) 
1 Assign the time interval T with a small initial value T0  

2 Assign the text similarity threshold S with a small initial 
      value S0  

3 Select links in Le that satisfy T and S, and compute 
        F-measure 
4 Increase S by a small step s1 
5 Repeat steps 3-4 until the maximum threshold Sm is reached 
6 Increase T by a small step s2 
7 Repeat steps 3-6 until T reaches the maximum threshold Tm  

8 Choose the threshold values Tt and St that achieve the best 
       F-measure (if ties exist, choose the first occurrence of 
       Tt and St) 

9 Return Tt and St 

Figure 2: Determining the thresholds of features  
In our experimentation, we specify T0 =1, s2=1, and Tm = 30, 
which means that we try the time interval from 1 day to 30 days. 
We specify S0 =0, s1=0.01, and Sm = 1, which means that we try 
from text similarity 0 to 1, with steps of 0.01. In total, our 
algorithm executes at most 30*100 times, in which we search for 
the combination of S and T that maximizes F-measure. Based on 
the identified optimal values Tt and St, a criterion is formed: a link 
is considered irrelevant if its time interval and text similarity 
values are above the thresholds. 

DetermineMappings (Le: links between bugs and changes 
identified by the traditional heuristics) 
1 Initialize the set of mappings M=Φ 

2 For each link l in Le  
3 For each mapping m between l’s change committer 

 and bug commenter 
4  If (m is not in M) 
5   Add m to M 
6     EndIf 
7  EndFor 
8 EndFor 
9 Return M 

Figure 3: Determining the mappings between bug owners and 
change committer 

We also learn the mappings between bug owners and change 
committers from the explicit links identified by the traditional 
heuristics. We extract all relationships between a bug commenter 
and a change committer and form the mapping set. The algorithm 
is described in Figure 3. The criterion for this feature is: a link is 
considered irrelevant if none of its bug commenters is mapped to 
its change committer.   

3.4 Recovering the Missing Links 
A large and evolving project tends to contain a lot of fixed bugs 
and committed changes. This results in a large number of 
potential links between bugs and changes. Furthermore, there are 
also many types of relationships between bugs and changes (as 
illustrated in Figure 4):  
• one to one: one bug could be fixed by one change;  
• many to many: one bug could be fixed by multiple changes, 

and one change could fix multiple bugs 
• no relationship: a change could be a non-bug fixing change, 

thus it does not link to any bug.  

 
Figure 4: The relationships between bugs and changes 

1 Store all possible links between bugs and links in L 
2 Initialize the set Lr =Φ 

3 Mine links Le between bugs and changes using 
      the traditional heuristics  
4 DetermineThresholds (Le) 
5 DetermineMappings(Le) 
6 For each link l in (L – Le) 

7   If there is mapping between l’s bug commenter and l’s  
        change committer 

8     If any of l’s bug comment time is within the time    
          interval threshold Tt 

9        If the text similarity between l’s bug report and 
             change log is within threshold St 
10         add l to Lr 
11    EndIf   
12       EndIf 
13     EndIf  
14 EndFor 

15 Return Lr + Le 
Figure 5: The ReLink algorithm  

To automatically identify the links between bugs and changes, we 
propose a link recovery approach, ReLink. ReLink is based on the 
identified features. The algorithm of ReLink is described in Figure 
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5: we first determine the satisfaction criteria of features by 
applying the algorithms described in Figures 2 and 3 (lines 3-5). 
The criteria include the time interval between the bug-fixing time 
and the change-commit time, the text similarity threshold, and the 
mappings between the bug owners and the change committers. 
ReLink automatically learns the criteria from the explicit links 
that can be identified by traditional heuristics. For each unknown 
link that cannot be identified by traditional heuristics (line 6), 
ReLink checks if the link satisfies all criteria (lines 7-9). If it 
satisfies, we consider it a valid link (line 10). After checking all 
the unknown links, ReLink returns the recovered set of links 
between bugs and changes (line 15). The overall process of 
ReLink is also illustrated in Figure 6. 
 

  

Figure 6: The overall process of ReLink 

4. EVALUATION 
This section presents evaluation results of ReLink. 

4.1 Subject Projects and Experimental Setup 
We investigated two projects as shown in Table 1. These two 
projects (ZXing and OpenIntents) are highly active Android 
projects hosted by Google Code. We collected their change logs 
from the SVN repository and bug reports from the Google Code 
issue tracking system. To obtain the ground truth (the “golden set”) 
of the links, we manually read change logs, bug reports, and the 
corresponding code changes to establish links between changes 
and bug reports. The manual annotation was performed by two 
people: one identifying the links and the other verifying the 
results. 

We also experimented with the Apache dataset that was provided 
by Bachmann and Bird et al. [6]. In the Apache dataset, the links 
between defects and bugs were manually annotated by an Apache 
core developer (Justin Erenkrantz) using the LINKSTER tool [6]. 
We treated this dataset as a “golden set” and used it to evaluate 
the performance of ReLink. 
To further evaluate the performance of ReLink when the bug IDs 
are absent from change logs, we conducted a simulation study as 
follows: we first collect a high quality dataset with most of the 
links identified, and then intentionally remove bug IDs in 50% of 
the change logs. Traditional heuristics fail to identify the links 

associated with these changes due to the absence of the bug IDs. 
We evaluate the performance of ReLink on recovering these 
missing links. We choose the Apache project and the Eclipse 
Memory Analyzer (MAT)5 project in this simulation experiment 
as they have a high percentage of linked bugs. To overcome the 
randomness introduced by the 50% sampling, we perform the 
simulation experiment 10 times and compute the average results.  

To facilitate the experiments, we have developed a tool for 
ReLink. The tool automatically collects information from source 
code repository and bug tracking system, builds the links between 
bugs and changes, and outputs the identified links. It is developed 
in Java, and runs on Windows and Linux. It consists of more than 
10K lines of code.  

4.2 Evaluation Metrics 
Our experiments can lead to four kinds of results: a link we 
identify is a true link (TP), a link we identify is not a true link 
(FP), a link we miss is a true link (FN), and a link we miss is not a 
true link (TN). We use Recall, Precision, and F-measure as 
evaluation metrics. The definitions of these metrics are as follows: 

 Precision = 

€ 

TP
TP + FP

 

This metric indicates how accurate the experiment result is. 

 Recall  = 

€ 

TP
TP + FN

 

This metric indicates the coverage of the experiment result.  

 F-measure = 

€ 

2× Precision × Recall
Precision + Recall

 

This metric takes the precision and the recall into consideration. It 
is a combined metric. In this study, we adopt the F1 metric, which 
weights precision and recall equally [32]. 

4.3 Evaluation Results 
4.3.1 Comparisons to the Golden Set 
Table 3 shows the experimental results for the three projects we 
investigated.  

The ZXing project contains 135 fixed bugs. For the traditional 
approach, we adopted the heuristics proposed by Bachmann and 
Bernstein [5] and identified links for 57 (42.2%) fixed bugs 
without any false positives. Our approach, ReLink, identified 
links for 95 (70.4%) fixed bugs with 10% false positives. In 
ZXing, there are 143 links between bugs and changes. ReLink can 
successfully identify 107 links among them, leading to a Recall of 
74.8%, which is much higher than that achieved by the traditional 
heuristics. The precision of ReLink is 0.9, which is marginally 
lower than that of the traditional approach. In terms of the 
F-measure, ReLink also outperforms the traditional approach 
(0.820 vs. 0.651).  

For OpenIntents project, the percentage of linked bugs found by 
ReLink is 4% more than that of the traditional heuristics. There 
are 129 links between bugs and changes in the project. ReLink 
successfully recovered 95 of them. Compared to the traditional 
heuristics, the Recall is improved by almost 10%. Both 
approaches can achieve high precisions, with ReLink resulting in 
a better overall F-measure.  

                                                                    
5 http://www.eclipse.org/mat/ 
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Table 3: Evaluation results 
Recovery Links Project Period Revisions 

 
#Fixed 
Bugs 

Approach % 
Linked 
Bugs 

Precision Recall  F-measure 

Traditional 42.2% 1.0 
（69/69） 

0.482 
(69/143) 

0.651 ZXing 11/2007- 
12/2010 

1-1694 135 
 

ReLink 70.4% 0.90 
(107/118) 

0.748 
(107/143) 

0.820 

Traditional 69.3% 1.0 
(87/87) 

0.674 
(87/129) 

0.805  OpenIntents 12/2007- 
12/2010 

1-2890 
 

101 

ReLink 73.3% 1.0 
(95/95) 

0.731 
(95/129) 

0.847 

Traditional 77.1% 0.746 
(791/1060) 

0.764 
(791/1035) 

0.755 Apache 11/2004- 
4/2008 

76294- 
899841 

686 

ReLink 89.8% 0.747 
(904/1210) 

0.873 
(904/1035) 

0.805 

Traditional 38.2% 0.741 0.375 0.498 Apache 
Simulation 

11/2004- 
4/2008 

76294- 
899841 

686 
ReLink 53.0% 0.682 0.523 0.592 

Traditional 49.1% 1 0.418 0.582 Eclipse MAT 
Simulation 

4/2008- 
2/2011 

10-1070 108 
ReLink 96.3% 0.858 0.623 0.718 

For Apache project, the golden set identified by the Apache 
developer contains 1035 links between bugs and changes. ReLink 
successfully recovered 904 links, while the traditional heuristics 
recovered only 791 links. ReLink improves the Precision as well, 
leading to a better F-measure (0.805).  

The experimental results confirm that ReLink can achieve better 
overall performance than the traditional heuristics. 

4.3.2 Simulation Study 
For the Apache simulation study, traditional heuristics lead to an 
average recall of 0.375 due to the removal of bug IDs from 50% 
of change logs. ReLink can achieve a much higher recall of 0.523. 
This is because ReLink uses feature criteria to identify links. 
Overall, the traditional heuristics lead to F-measure 0.498, while 
ReLink achieves F-measure 0.592.  

For the Eclipse MAT simulation study, traditional heuristics lead 
to a low recall of 0.418 due to the removal of bug IDs from 50% 
of change logs. ReLink can achieve a much higher recall of 0.623. 
Overall, the traditional heuristics lead to F-measure 0.582, while 
ReLink achieves F-measure 0.718, a significant improvement.  

For the simulation studies, Table 3 only shows the average results 
of 10 simulations. We also performed the paired-sample t-test to 
check if the F-measures with ReLink were statistically 
significantly better than the traditional heuristics. The t-test results 
confirmed that ReLink can lead to better F-measures than the 
traditional heuristics, at significance level 0.01. All simulation 
results confirm that ReLink can recover links with reasonable 
accuracy. 

4.4 Discussion 
Traditional heuristics identify links for a certain percentage of 
bugs, but they fail to identify links for the bugs that have no bug 
ID references in committed changes. As our experimental results 
show, ReLink is more effective to recover the links between bugs 
and changes than the traditional heuristics. ReLink can 
significantly reduce false negatives (missing links) – Table 3 
shows that the recall values of ReLink are 6%-26% higher than 
those of traditional heuristics. The higher recall values are 
achieved because ReLink can identify links even the bug IDs are 

missing from the change logs, or the bug reference formats are 
irregular. Unlike traditional heuristics, ReLink does not use 
regular expressions to search for links. Instead, it identifies 
features of links and checks the satisfiability of unknown links. 
The performance of ReLink (measured in terms of F-measure) is 
better than that of traditional methods for all studied projects. 

Still ReLink may introduce false negatives. For example, Table 3 
shows that ReLink missed 25.2% of links in ZXing and 26.9% 
links in OpenIntents. We found two major reasons for false 
negatives. One reason is that there are no similar keywords 
between bug reports and change logs for some links, causing very 
low text similarity. Thus ReLink discards these links as irrelevant. 
The other reason is that some bugs have long intervals between 
the change-commit time and the bug-fixing time. As a result, 
these bugs fail to satisfy the time interval threshold. Figure 7 
shows such an example in OpenIntents. The change for fixing the 
bug 217 was committed on Aug 22, 2009. The status of the bug 
217 was not updated to “Fixed” until Sep 22, 2009. Note that, all 
these missing links are not identifiable by traditional heuristics 
either. 

Change Log (Revision: 2293; Author: rmceoin; Date: Aug 22, 
2009) 
OI Safe: large patch, added Search activty, completely redid 
autolock, added preference 'Lock on screen lock' with default of 
true.… 
-------------------------------------------------------------------------------- 
Bug Report (Issue 217; Status: fixed): 
What steps will reproduce the problem? 
1: Unlock OI Safe… 
2: Leave screen on PassEdit 
… 
After step 6, screen should auto-lock. 
 
Comment 1 by project member rmceoin@gmail.com,Mar 10,2009 
…Also fails with PassView.  
 
Comment 2 by project member rmceoin@gmail.com,Sep 22,2009 
…Status: Fixed 

Figure 7: An example of false negative cases 
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Change Log (Revision: 99398; Author: trawick; Date: Apr 17, 
2003) 
merge this fix into 2.0.46-dev:\n\n  …   PR 18649  
[Justin Erenkrantz, Jeff Trawick] 

------------------------------------------------------------------------------- 
Bug Report (bug 18649; Status: closed): 
…enable-layout broken in 2.0.45. In 2.0.45, --enable-layout no 
longer works… 

Figure 8: An example of false positive cases  

Bachmann et al. [6] also discovered that, some bugs in Apache 
projects are actually “bugs incognito”, i.e., these bugs were only 
discussed in developer mailing list and were not stored/tracked 
using bug track systems. Like traditional heuristics, ReLink 
cannot discover links for this type of bugs either. Mining mailing 
lists and recovering more links remain as future work. 
ReLink may also introduce false positives. We manually 
examined these false positives in Table 3. We found that the false 
positives of ReLink in the Apache project overlapped largely with 
those identified by traditional heuristics. These links were 
incorrectly identified due to reasons such as merge of changes. 
Figure 8 shows an example of false positive case in Apache 
introduced by the merge of changes. Revision 99398 was actually 
a merge of the bug fix (PR 18649) found in version 2.0.45 into a 
new version (2.0.46). 

There are ways to reduce ReLink’s number of false positives. For 
example, we can modify the ReLink algorithm (before line 15 in 
Figure 5) to let it double-check the links Le mined by the 
traditional heuristics - if a link l in Le does not satisfy the feature 
criteria, ReLink considers l an irrelevant link and removes it. We 
have compared the performance of the revised ReLink (called 
ReLink-), ReLink and traditional heuristics for the Apache project. 
The results are shown in Figure 9. ReLink- can achieve better 
precision than the other two methods. However, the recall of 
ReLink- is lower because of the tradeoff between recall and 
precision. Overall, ReLink-’s F-measure is better than that of the 
traditional heuristics, but slightly worse than ReLink. 
Investigating techniques that can further reduce the number of 
false positives and at the same time improve the recall value will 
be our important future work. 

 
Figure 9: The performance of ReLink-  

5. Practical Effects of ReLink 
We have shown that ReLink can identify the links between bugs 
and changes more accurately than the traditional heuristics. The 
immediate next question would be the practical effects of the 

results. In this section, we show the implications of our results on 
software maintenance studies, especially on maintainability 
measurement and defect prediction.  

5.1 Implications of Results on Maintainability 
Measurement 
Many maintenance metrics have been proposed to understand 
maintenance activities and measure software maintainability. For 
example:  
• The percentage of bug-fixing changes [15, 16, 21]: changes 

can be classified into many categories such as corrective 
changes (for bug fixing), adaptive changes (e.g., for 
accommodating new features), and perfective changes (e.g., 
for refactoring). Knowing the percentage of bug-fixing 
changes can help understand maintenance efforts spent on 
bug-fixing activities.  

• The percentage of buggy files [33]: this is the percentage of 
defective files (files containing at least one bug). It can help 
measure software quality. 

• Mean Time to Fix [22]: this is to measure the average time a 
team spends on fixing a bug. It can help measure a 
maintenance team’s bug-fixing ability. The time spent for 
fixing a bug is calculated as the interval between bug report 
open time and bug-fixing change commit time.  

Table 4. The comparisons of measurement data  

Project Linking 
approaches 

%Bug-fixing 
changes 

%Buggy 
files 

Mean 
Time to 

Fix(days) 
Golden 8.1% 

(138/1694) 
29.6% 

(118/399) 
7.5 

Traditional 4.0% 
(67/1694) 

14.8% 
(59/399) 

10.2 

ZXing 

ReLink 6.3% 
(107/1694) 

20.8% 
(83/399) 

7.3 

Golden 4.2% 
121/2890 

4.9% 
(36/742) 

25.1 

Traditional 2.9% 
(83/2890) 

2.6% 
(19/742) 

21.2 

 
OpenIntents 

ReLink 3.3% 
(94/2890) 

4.0% 
(30/742) 

25.1 

Golden 2.3% 
(976/43167) 

50.5% 
(98/194) 

159.7 

Traditional 1.7% 
(753/43167) 

47.9% 
(93/194) 

178.9 

Apache 

ReLink 2.0% 
(866/43167) 

52.1% 
(101/194) 

153.9 

These metrics can be derived from the links between bugs and 
changes. After identifying the links, we know which bugs/changes 
are linked and which are not. Therefore we can collect the 
corresponding data and compute the metrics. As the quality of 
links collected by ReLink is higher than that collected by the 
traditional heuristics, we can obtain better measurement data for 
the above-mentioned metrics. Table 4 shows the measurement 
data we collected for the studied projects using the traditional 
heuristics and ReLink. We can see that the measures derived from 
links obtained by ReLink are closer to the actual ones, while the 
measures obtained by traditional heuristics contain larger 
discrepancies. For example, for ZXing, the actual percentage of 
bug-fixing changes is 8.1%. The measures derived from ReLink 
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and traditional heuristics are 6.3% and 4.0% respectively. The 
ZXing team’s actual mean time to fix value is 7.5 days per bug. 
The measures derived from ReLink and traditional heuristics are 
7.3 and 10.2 respectively. Clearly ReLink leads to more accurate 
measurement, thus it helps project teams better understand and 
plan their maintenance activities. 

5.2 Defect Prediction with Relink  
To measure the impact of ReLink on software defect prediction, 
we built commonly-used file level defect prediction models using 
defect data collected from traditional heuristics and ReLink, and 
measured the performance of the models to predict ground truth 
defects.  

5.2.1 Data Collection 
We collected metric data and defect data for the studied projects, 
and built a classification model to predict the defect-proneness of 
the files. The metric data includes file-level static code complexity 
measures collected by the Understand for Java/Understand for 
C++ tool6, such as lines of code, cyclomatic complexity, average 
lines of comments, etc. The defect data contains buggy instances 
(files) collected through analyzing the identified links between 
bugs and changes.    

The buggy and clean labels are assigned based on links between 
change logs and bugs. If a commit is linked to a bug, we assume 
the files in the commit are buggy. To label files, we use the links 
obtained from three different approaches: traditional heuristics, 
ReLink, and the ground truth. Table 5 summarizes the datasets 
used in this experiment. The datasets contain different percentages 
of buggy files. For example, the ZXing project contains 399 files, 
among which 29.6% of the files are buggy in the “Golden” 
(ground truth) dataset, 14.8% files are buggy in the “Traditional” 
dataset, and 20.8% files are buggy in the “ReLink” dataset. 

Table 5. Defect Prediction Dataset 

Subject Version # of 
files 

# of 
metrics 

Linking 
approaches 

% of 
buggy 

Traditional 14.8% 
ReLink 20.8% 

ZXing 
 

1.6 399 41 

Golden 29.6% 
Traditional 10.7% 

ReLink 28.6% 
Open- 
Intents 

 

Revision 
1088~2073 

56 
 

41 

Golden 39.3% 
Traditional 57.2% 

ReLink 46.9% 
Apache  2.0 194 

 
60 

Golden 50.5% 

5.2.2 Prediction and Evaluation Models 
After collecting the metric data and buggy labels, we built a 
classification model using a popular machine-learning algorithm, 
Decision Tree (J48 in the Weka implementation [31, 32]). 

We adopted the 10-fold cross validation technique to train and 
evaluate the model. When the 9-fold is used as a training set, we 
used the labels from three datasets: Traditional, ReLink, and 
Golden. However, for the 1-fold (test set), we used the labels 
obtained from the Golden set, which are manually recovered 

                                                                    
6 http://www.scitools.com/ 

ground truth links (Figure 10). Note that the ultimate goal of 
defect prediction is to identify ground truth (actual) defects.  

Since the performance may vary based on instances in each fold, 
we ran this 10-fold cross validation model 100 times (100 
10-fold), and computed the average performance. To measure the 
prediction model’s performance, we used the standard measures 
such as Precision, Recall, and F-measure [32].  

5.2.3 Results 
Table 6 presents the prediction results using three different 
approaches. The prediction performance of using ReLink is much 
better than that of using traditional heuristics. For example, the 
F-measure with Traditional is 0.257 for OpenIntents, while the 
F-measure with ReLink is 0.706, a significant improvement. 
Similarly, for ZXing, the F-measure with ReLink is 0.325, while 
F-measure with Traditional is only 0.171. For Apache, ReLink 
also improved the prediction accuracy. 

We have also performed the paired-sample t-test to check if the 
improvements in F-measures are statistically significant. The t-test 
results confirmed that they are statistically significant, at the 99% 
confidence level (p-value < 0.01). 

 
Figure 10: An example of false positive cases  

Table 6. Prediction Results (Decision Tree) 

Subject Linking 
approaches 

Precision Recall F-measure 

Traditional 0.346 0.114 0.171 
ReLink 0.432 0.261 0.325 

ZXing 

Golden 0.476 0.435 0.454 
Traditional 0.405 0.188 0.257 

ReLink 0.779 0.645 0.706 
Open- 
Intents 

Golden 0.742 0.683 0.711 
Traditional 0.672 0.727 0.698 

ReLink 0.716 0.748 0.731 
Apache  

Golden 0.709 0.713 0.711 

These results clearly indicate that the defect information collected 
by ReLink improves the defect prediction performance. However, 
we noticed that the improvement varies across projects. For 
example, ReLink significantly improved the prediction accuracy 
of ZXing, while the improvement of Apache seems marginal. 
There are a few possible explanations for these results. First, as 
we showed in Table 3, the quality of Apache change logs is 
decent. As a result, traditional heuristics can mine links with 
reasonable accuracy. Basically, the quality of Apache defect 
information derived by traditional heuristics and that by ReLink 
do not have huge differences. Note that ReLink is still able to 
improve the prediction accuracy because of the more accurate 
defect information derived. 

ReLink significantly improved the prediction performance of 
OpenIntents. As we showed in Table 3, ReLink is able to recover 

testing setReLink X X X X X X X X X X

X X
X

X

X: buggy labelled 
instance

Ground 
truth 

X X X X XTraditional 
heuristics

X X X X X X X X X XX
XX X

X X X XXX X

Training sets

1

2

3
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many links missed by traditional heuristics. In addition, the 
number of instances of OpenIntents is small. As we also found in 
a recent study [18], prediction models for a subject with a small 
number of instances are more sensitive to noise. Since ReLink 
provides much accurate defect information, the prediction 
performance of OpenIntents is significantly improved. 

6. THREATS TO VALIDITY 
There are potential threats to the validity of our work: 

• For the two Android projects, the golden sets of links were 
collected by us manually. To assure their quality, two people 
were involved: one annotating the links and the other 
verifying them. However, it is difficult to guarantee that the 
golden sets do not contain any false negatives or false 
positives. Even for the Apache dataset, which was manually 
examined by an Apache core developer, its quality is not 
completely assured because the developer may not recall all 
bug-fixing activities happened several months or years ago.  

• Our approach is based on the assumption that the 
descriptions of bugs and committed changes are similar. In 
our investigation, we found that many open source projects 
hosted by Google Code follow the features we described. 
However, for projects that do not satisfy the assumption, our 
approach would be under threat. 

• All datasets used in our experiments were collected from 
open source projects. We need to evaluate the performance 
of ReLink on commercial projects. This remains as future 
work.  

7. RELATED WORK 
Real-world data are often noisy, which may affect interpretations 
and models derived from the data. The data quality problem has 
also been observed by some software engineering researchers. For 
example, Mockus [20] noted that in many realistic scenarios the 
data quality is low (e.g., some change data could be missing), 
which could affect the outcome of an empirical study. Myrtveit et 
al. [24] and Strike et al. [29] also noticed the problem of missing 
and incomplete data in software effort estimation. In [1, 10, 11], 
authors analyzed the quality of bug reports and change logs. 
Liebchen and Sheppard [19] investigated the data quality issue 
and found that among hundreds of software engineering papers 
only four suggested that the data quality issue may affect their 
analysis results. In this paper, we focus on software process data 
and propose methods to improve data quality. 

To improve the correctness of identified links between defects and 
changes, Fisher et al. [13, 14] discussed the confidence of links. 
They took file names specified in the bug tracking databases and 
change logs into account. If the files exist in both of them, the 
confidence of the links will be higher. Śliwerski et al. [28] 
proposed to verify the links by semantic analysis. A link is valid if 
it satisfies one of the conditions such as whether the bug has been 
resolved as Fixed at least once, whether the short description of 
the bug report is contained in the committed change log, etc. 
Bachmann et al. [5] improved Fischer’s approach by excluding all 
false-positive numbers that have a defined format. They validated 
the linked bug report by checking the relationship between the 
bug-fixing date and the change commit date. 

Although many researchers proposed various kinds of approaches 
to verify the links, the quality of the software process data is still 

not good enough. Bachmann and Bird et al. [6, 7] showed strong 
evidence that, only a fraction of bug fixes are explicitly labeled in 
the source code repository, and there exist systematic biases in 
finding the links. The bias could affect the effectiveness of the 
studies based on the process data such as software defect 
prediction. Nguyen et al. [25] also found that biases existed in a 
commercial project (IBM Jazz) that enforced strict development 
guidelines. In order to find the missing links, Bird et al. [8] 
developed the tool “LINKSTER” to facilitate identification of 
links manually. However, their tool requires manual effort, and 
thus is difficult to scale up. 

Our work is also related to the traceability analysis among 
software artifacts. Many researchers have proposed information 
retrieval (IR) based techniques to recover traceability links 
between source code and text documents (such as development 
journals, error logs, and emails) [2, 3, 4]. Runeson et al. [26] and 
Wang et al. [30] applied IR techniques to compare text similarity 
between two bug reports, thereby identifying potentially duplicate 
bug reports. In our work, we apply IR techniques to compare text 
similarity between bug reports and change logs, thereby 
recovering traceability links between bugs and changes. 

8. CONCLUSIONS AND FUTURE WORK 
To automatically collect links between bugs and changes, 
traditional heuristics look for explicit links to bugs in change logs. 
Recent studies have shown that traditional heuristics could be 
biased, since developers may not leave explicit links in change 
logs. In this paper, we have proposed ReLink, an automatic link 
recovery algorithm. ReLink is based on automatically learned 
feature criteria from explicit links. Our experimental results have 
shown that ReLink is able to recover links reliably. We have also 
shown that the more accurate defect information collected by 
ReLink has positive impacts on the follow-up software 
maintenance studies, including defect prediction models.  

Our experimental results confirm that defect information collected 
using traditional heuristics should be used with caution. It is 
desirable to use link recovery algorithms and to perform careful 
inspection of the collected defect information. ReLink is the first 
step toward this direction.  

In future more research on recovering links is needed in order to 
obtain more accurate defect data. We will also apply our approach 
to industrial projects to evaluate its usefulness.  

Our tool and the experimental data used in this paper are available 
at: 

http://www.cse.ust.hk/~scc/ReLink.htm 
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