
Historical Spectrum Based Fault Localization
Ming Wen , Junjie Chen , Yongqiang Tian , Rongxin Wu ,

Dan Hao, Shi Han , and Shing-Chi Cheung

Abstract—Spectrum-based fault localization (SBFL) techniques are widely studied and have been evaluated to be effective in locating

faults. Recent studies also showed that developers from industry value automated SBFL techniques. However, their effectiveness is

still limited by two main reasons. First, the test coverage information leveraged to construct the spectrum does not reflect the root cause

directly. Second, SBFL suffers from the tie issue so that the buggy code entities can not be well differentiated from non-buggy ones. To

address these challenges, we propose to leverage the information of version histories in fault localization based on the following two

intuitions. First, version histories record how bugs are introduced to software projects and this information reflects the root cause of

bugs directly. Second, the evolution histories of code can help differentiate those suspicious code entities ranked in tie by SBFL. Our

intuitions are also inspired by the observations on debugging practices from large open source projects and industry. Based on the

intuitions, we propose a novel technique HSFL (historical spectrum based fault localization). Specifically, HSFL identifies bug-inducing

commits from the version history in the first step. It then constructs historical spectrum (denoted as Histrum) based on bug-inducing

commits, which is another dimension of spectrum orthogonal to the coverage based spectrum used in SBFL. HSFL finally ranks the

suspicious code elements based on our proposed Histrum and the conventional spectrum. HSFL outperforms the state-of-the-art SBFL

techniques significantly on the Defects4J benchmark. Specifically, it locates and ranks the buggy statement at Top-1 for 77.8 percent

more bugs as compared with SBFL, and 33.9 percent more bugs at Top-5. Besides, for the metrics MAP and MRR, HSFL achieves an

average improvement of 28.3 and 40.8 percent over all bugs, respectively. Moreover, HSFL can also outperform other six families of

fault localization techniques, and our proposed Histrum model can be integrated with different families of techniques and boost their

performance.

Index Terms—Fault localization, version histories, bug-inducing commits

Ç

1 INTRODUCTION

SOFTWARE debugging is time-consuming and labor-
intensive. According to a recent study [1], this process

costs nearly 50 percent of developers’ time and efforts. To
mitigate the problem, automated debugging attracts much
attention, where fault localization (FL) has been recognized
as an important step [2], [3], [4]. Xia et al. [5] recently con-
ducted an empirical study and found that FL can actually
help developers save debugging time in practice. Another
recent study also revealed that developers from industry
value automated FL techniques [6]. Specifically, more than
97 percent of the developers consider it essential or

worthwhile to leverage automated FL techniques. Besides,
FL techniques are essential for automated program repair
(APR) techniques (e.g., [7], [8], [9], [10]), which rely mostly
on FL to generate a fault space at statement granularity. The
effectiveness of FL greatly affects the performance of APR
[7], [10]. Therefore, there are strong demands for better FL to
improve APR’s performance. As a result, various recent
efforts (e.g., [11], [12], [13]) have beenmade to advance FL.

Spectrum-based fault localization (SBFL) is a major cate-
gory of FL techniques (e.g., [11], [12], [14], [15], [16]). It con-
structs a coverage based spectrum by running the passing and
failing tests, and then uses the spectrum to compute the sus-
picious score for each code entity (e.g., statement or
method). It assumes that the code entities covered by more fail-
ing tests but fewer passing tests are more likely to be buggy. Due
to its effectiveness, SBFL has been used by developers for
debugging in practice [15], [17], [18].

Even though successes in locating faults by SBFL have
been demonstrated, the effectiveness of SBFL is still com-
promised due to two main reasons [19], [20], [21], [22].
First, SBFL is based only on test coverage information.
Although test coverage has been leveraged to approxi-
mate a bug’s root cause, it does not pinpoint the root
cause of a bug directly [19], [20]. Second, SBFL widely suf-
fers from the tie issue [21], [22]. One typical tie example is
that the statements in the same program block have the
same suspicious score, since they are equally covered by
tests. In such cases, the buggy code entities cannot be dif-
ferentiated from the non-buggy ones in the same program
block.

� M. Wen is with the School of Cyber Science and Engineering, the National
Engineering Research Center for Big Data Technology and System, Serv-
ices Computing Technology and System Lab, Cluster and Grid Computing
Lab, Huazhong University of Science and Technology, Wuhan 430074,
China. E-mail: mwenaa@hust.edu.cn.

� Y. Tian and S.-C. Cheung are with the Department of Computer Science and
Engineering, The Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong, China. E-mail: {ytianas, scc}@cse.ust.hk.

� J. Chen is with the College of Intelligence and Computing, TianjinUniversity,
Tianjin 300072, China. E-mail: junjiechen@tju.edu.cn.

� R. Wu is with the Department of Cyber Space Security, Xiamen University,
Xiamen 361005, China. E-mail: wurongxin@xmu.edu.cn.

� D.Hao is with the Key Laboratory of High Confidence Software Technologies
and Institute of Software, EECS, Peking University, Beijing 100871, China.
E-mail: haodan@pku.edu.cn.

� S. Han is with Microsoft Research Asia, Beijing 100080, China.
E-mail: shihan@microsoft.com.

Manuscript received 21 Dec. 2018; revised 20 Sept. 2019; accepted 30 Sept.
2019. Date of publication 17 Oct. 2019; date of current version 12 Nov. 2021.
(Corresponding author: Rongxin Wu.)
Recommended for acceptance by W. Visser.
Digital Object Identifier no. 10.1109/TSE.2019.2948158

2348 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

0098-5589 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5588-9618
https://orcid.org/0000-0001-5588-9618
https://orcid.org/0000-0001-5588-9618
https://orcid.org/0000-0001-5588-9618
https://orcid.org/0000-0001-5588-9618
https://orcid.org/0000-0003-3056-9962
https://orcid.org/0000-0003-3056-9962
https://orcid.org/0000-0003-3056-9962
https://orcid.org/0000-0003-3056-9962
https://orcid.org/0000-0003-3056-9962
https://orcid.org/0000-0003-1644-2965
https://orcid.org/0000-0003-1644-2965
https://orcid.org/0000-0003-1644-2965
https://orcid.org/0000-0003-1644-2965
https://orcid.org/0000-0003-1644-2965
https://orcid.org/0000-0002-4648-3795
https://orcid.org/0000-0002-4648-3795
https://orcid.org/0000-0002-4648-3795
https://orcid.org/0000-0002-4648-3795
https://orcid.org/0000-0002-4648-3795
https://orcid.org/0000-0002-0360-6089
https://orcid.org/0000-0002-0360-6089
https://orcid.org/0000-0002-0360-6089
https://orcid.org/0000-0002-0360-6089
https://orcid.org/0000-0002-0360-6089
https://orcid.org/0000-0002-3508-7172
https://orcid.org/0000-0002-3508-7172
https://orcid.org/0000-0002-3508-7172
https://orcid.org/0000-0002-3508-7172
https://orcid.org/0000-0002-3508-7172
mailto:mwenaa@hust.edu.cn
mailto:ytianas@cse.ust.hk
mailto:scc@cse.ust.hk
mailto:junjiechen@tju.edu.cn
mailto:wurongxin@xmu.edu.cn
mailto:haodan@pku.edu.cn
mailto:shihan@microsoft.com

We propose to overcome these limitations by taking a
novel perspective from project version histories. First, a
bug’s root cause can be directly reflected in the version his-
tory. A bug was introduced into a software project by either
the initial code commit or subsequent code commits when
the software evolves [23]. In particular, the commit intro-
ducing a bug is called a bug-inducing commit [23], [24], and
the associated bug-revealing tests start to fail after the bug-
inducing commit is adopted [25]. Intuitively, identifying the
bug-inducing commit will help locate the root cause (i.e.,
those buggy statements). Second, the version histories of
code entities can help differentiate those suspicious code
entities, since different code entities (even in the same block)
could have different evolution histories (i.e., modified by
different commits). Therefore, it greatly increases the chan-
ces to break the tie issue in SBFL.

Our intuition is also inspired by the observations from the
debugging practices of popular projects. For example, we
observed that developers in project GCC often try to locate
the bug-inducing commits first when they work on a
reported bug. Comments such as “Confirmed, started with
r239357” [26] are often left in bug reports. Similar practices
are also observed among other projects. For instance, when
debugging SOLR-2606 [27], a developer located the corre-
sponding bug-inducing commit and left amessage “I’m fairly
certain this is caused by the enhancements made in SOLR-1297 to
add sorting functions”. Such message reveals that the bug was
caused by the code committed to implement enhancements
requested by issue SOLR-1297. After obtaining such knowl-
edge, developers located and resolved this bug quickly. Our
observations are also confirmed by the feedbacks from
industry (see Section 2.1).

Based on the above intuition and observations, we pro-
pose Historical Spectrum-based Fault Localization (HSFL)
in this study, which leverages the information of version
histories in fault localization. HSFL first identifies the bug-
inducing commit in the version history for each bug-reveal-
ing test. In other words, it finds the first commit in the ver-
sion history from which the bug-revealing test cases start to
fail. However, code commits are usually tangled [28]. They
are often large in size, but only a small part of the code ele-
ments introduced in these commits are related to the fault.
Therefore, it is very challenging to distill the root causes
from the bug-inducing commits. Besides, the time gap
between when the bug-inducing commit is checked in and
the target version (i.e., the version subject to fault localiza-
tion) might be large, and lots of commits can be adopted
during the period. Therefore, it brings the challenge to trace
their evolutions to the target version for fault localization.

To address these challenges, HSFL builds a Historical
Spectrum (denoted as Histrum) for each suspicious code
entity introduced in the bug-inducing commits. TheHistrum
traces the evolutions for each suspicious code element from
the inducing version (i.e., the version after the bug-inducing
commit is adopted) to the target version via history slicing
[29]. Specifically, it leverages the information of non-induc-
ing commits (i.e., those commits do not introduce the bug) in
the version histories to filter out those noises in the bug-
inducing commits. HSFL then computes the suspicious score
for each code entity based on the Histrum via leveraging
those techniques proposed for SBFL (e.g., Ochiai [30]), where

a bug-inducing commit and a non-inducing commit are anal-
ogous to a failing test and a passing test, respectively. The
key insight of our approach is that those code entities modified
by more bug-inducing commits but fewer non-inducing commits
are more likely to be the root cause of the bug.HSFL further exam-
ines whether those suspicious code entities evolved from
bug-inducing commits have been executed by bug-revealing
tests in the target version to filter out potential noises for bet-
ter fault localization.

We evaluated HSFL on 357 real bugs from the DEFECTS4J
[31] benchmark. Specifically, we applied HSFL to each of the
bugs and located the faulty code entities at the statement level,
which is the granularity widely adopted by existing SBFL
techniques (i.e., [11], [12], [14], [15], [16]), and required by
automated program repair techniques to generate the fault
space [7], [8]. We compared the results generated by HSFL
with the state-of-the-art SBFL techniques [11]. Our evaluation
results show that HSFL can significantly improve SBFL’s per-
formance. For example, HSFL locates and ranks the buggy
statement at Top-1 for 77.8 percent more bugs compared
with SBFL, and 33.9 percent more bugs for Top-5. HSFL also
performs significantly better than SBFL for the evaluation
metrics MAP and MRR, with an improvement of 28.3 and
40.8 percent respectively. We also applied other SBFL techni-
ques [32], [33], [34], [35] in the Histrum model, and found
thatHSFL also achieves significant better performances using
other techniques such as Tarantula [32], Op2 [34], Barinel [35]
and DStar [33]. We also compared HSFL with other six fami-
lies of fault localization techniques, including mutation-based,
slicing-based, stack trace-based, predicate switching-based, hybrid-
based and learning-to-rank-based techniques. Our extensive
evaluations show that our proposed approach can not only
outperform existing baselines from different families, but
also it can boost the performance of existing techniques.
Moreover, the results generated by HSFL can significantly
improve the performance of the state-of-the-art search-based
APR techniques. Specifically, the first correct patch can be
searched 3.02 times faster via leveraging the fault space gen-
erated byHSFL comparedwith that generated by SBFL.

In summary, our major contributions are as follows.

� Observation: We made observations from both open
source communities and industry that version histo-
ries contain useful debugging information and bug-
inducing commits are helpful to understand and
locate software bugs.

� Originality: We are the first to leverage bug-inducing
commits in facilitating fault localization. Specifically,
we propose a novel model called historical spectrum,
which builds a spectrum along the version histories
in orthogonal to the conventional coverage based
spectrum.

� Implementation: We implement the proposed idea as
a fault localization technique, HSFL, which leverages
existing techniques (e.g., Ochiai) to rank all suspi-
cious code entities based on the historical spectrum.

� Evaluation:We evaluate HSFL on the DEFECTS4J bench-
mark and compare it extensively with the state-of-
the-art FL techniques from seven different families.
The results show that our proposed approach can not
only outperform existing baselines from different

WEN ET AL.: HISTORICAL SPECTRUM BASED FAULT LOCALIZATION 2349

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

families, but also it can boost the performance of
existing techniques. More importantly, it can also sig-
nificantly boost the performance of the state-of-the-
art automated program repair techniques to find the
correct patches.

The rest of the paper is structured as follows. Section 2
presents the motivation and challenges of this work. In
Section 3, we present our approach in detail. Experimental
setup is introduced in Section 4, and Section 5 presents the
experimental results which demonstrate the usefulness of
HSFL. In Section 6, we discuss several points related to the
performance of our proposed tool. Section 7 discusses the
related works and Section 8 concludes this work.

2 MOTIVATION AND CHALLENGES

In this section, we present our observations and the motiva-
tion of this study together with the potential challenges.

2.1 Debugging Practice

Version control systems are widely used to manage software
evolution. The version histories record how faults are intro-
duced into the software. Such information is important and
usually leveraged by developers in debugging. We observe
that developers of open source projects often discuss about
the information of version histories, especially the bug-
inducing commits, in bug reports. A bug-inducing commit is
the one that introduces a bug [23]. It causes some tests, called
bug-revealing tests, start to fail until the bug is fixed. After the
bug-inducing commit is submitted, the bug-revealing test
cases start to fail. Specifically, We found that substantial bug
reports, 821 and 1,733 bug reports from GCC and Apache
projects respectively, contain discussions about bug-
inducing commits by searching the keywords of “started
with”, “caused by” and “introduced by” among the bug
reports tracked in the associated bug-tracking system. We
selected these three keywords since by sampling a small set
of bug reports randomly, we observed that developers in our
selected projects mostly used these keywords to deliver the
information of bug-inducing commits. Examples of these
bug reports [26], [27] are shown in Section 1. We also
observed that the root cause of a bug is frequently correlated
with its bug-inducing commits. For instance, we found that
for 78.9 percent of those bugs, at least one statement in their
bug-fixing commits have been modified by the associated
bug-inducing commits. Inspired by this, we further sur-
veyed developers from industry to understand the role of
the information of version histories and bug-inducing com-
mits in general practices of debugging and fault localization.

To understand current debugging practices in industry,
we designed an online survey following the methodology of
an existing work [36] and distributed it to the developers at
Microsoft. Before distributing our survey, we conducted

pilot interviews with 2 experienced engineers at Microsoft to
discuss whether our designed questions and answers are
appropriate. Based on the collected comments and feedback,
we refined our survey questions in order to ensure that our
designed questions are relevant and clear.1 For instance, we
used “traces” and “running log” in two options in the first
question at the first beginning. However, the involved engi-
neers suggested that these two terms are hard to differentiate
in practice and thus might not be good answers. We modi-
fied these answers accordingly, and then distributed our sur-
vey through the discussion groups at Microsoft, which cover
nearly 1,500 developers from multiple products. The survey
was posted for a week. We set the time to one week since we
observe that there is no increasing number of feedback
received after one week. Finally, 109 valid responses were
received, and we kept the 103 responses submitted from
those developers who have at least 2 years of industrial soft-
ware development experiences in our analysis. We consider
these developers as experienced ones in terms of debugging.
The response rate is hard to measure since this survey was
posted on discussion groups, which is not mandatory.
Besides, it is hard to measure exactly how many developers
have viewed the post during the oneweek.

We are first curious about what information is useful and
has been leveraged by developers in debugging in practice.
Five options are provided, which are log information, test cov-
erage, stack traces, version histories and others. The design of
these five options is motivated by the findings of existing
studies [23], [37], [38], [39], [40] and refined after the pilot
interviews. Fig. 1 shows the results, and we can see that
among the 103 responses analyzed, 75.7 percent (78/103) of
the developers have ever leveraged version histories for
debugging, and the ratio is comparable with the ratios of
stack traces and log information. This demonstrates the use-
fulness of version histories in debugging.We are then curious
to know what specific information of version histories that
these 78 developers think is useful for debugging, and Fig. 2
shows the results. Specifically, 93.6 percent (73/78) of them
think bug-inducing commits are useful for debugging, and
74.4 percent of them (58/78) find that regression range (i.e.,
the range of commits between the last known good version to
the first known bad version of a bug) is useful. These results
show that the majority of developers (73/103) find bug-
inducing commits providing useful debugging information.
For those 73 developers, we further asked them in which
ways have they leveraged such information for debugging in
practice. Fig. 3 shows the statistical results of the usages of
bug-inducing commits by these developers. 95.9 percent of
them (70/73) have leveraged bug-inducing commits to
understand the root causes of the bugs and further locate the
faults. However, we find that 74.3 percent (52/73) of these
developers conduct the process of fault localizationmanually
due to the lack of automated tool support. We also observe
that a substantial of developers mention that they leveraged
the built-in tool “git bisect” to search among version histories.

Since the conducted survey is not the major contributions
of this study, we only disccused partial results in this section.
Detailed survey results are available online.2 Nevertheless,

Fig. 1. What information have you ever used for debugging?.

1. The survey is available at https://www.wjx.cn/jq/19791453.aspx
2. https://github.com/justinwm/HSFL/blob/master/survey.pdf

2350 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

https://www.wjx.cn/jq/19791453.aspx
https://github.com/justinwm/HSFL/blob/master/survey.pdf

the above discussed results confirm our intuition and reveal
the following three points. First, the information of version
histories, especially the bug-inducing commits, is useful for
developers to debug in practice. Second, bug-inducing com-
mits contain rich information of the root causes of software
bugs, which is helpful for fault localization. Third, themajor-
ity of developers lack automated tool supports to leverage
such information.

As revealed by our survey, it is a common practice for
developers to leverage “git bisect” to search for the informa-
tion of bug-inducing commits when debugging for large-
scale projects like LLVM and Lucene. Actually, we also
observe that such practice can also be generalized to many
open-source project communities. Specifically, we selected
three large-scale open source projects: Lucene, LLVM and
Accumulo. And then we searched their bug reports using the
keyword “bisect”. We observe that many bug reports (i.e., in
total nearly 100 for the three projects) directly contain such
information and deliver themessage that developers actually
adopted such a heuristic in practice to identify the inducing
commits when debugging. Be noted that not all developers
who adopted “git bisect” to identify bug-inducing commits
will leave such messages on the associated bug reports. Sev-
eral examples are selected as follows for each project:

For Lucene:
“git bisect blames commit 26d2ed7c4ddd2 on SOLR-10989” 3

“According to git bisect, this was broken by SOLR-8728” 4

For LLVM:
“bisect indicates that r146856 is the first bad commit (con-
stexpr handling improvements.)” 5

“A bisect points to r115374” 6

“My bisect also pointed to r149641 is the first bad commit.” 7

For Accumulo:
“Using git bisect, found the breaking commit to be 659a33e8 as
a part of ACCUMULO-4596” 8

“git bisect revealed f599b46 to have introduced this problem
(ACCUMULO-3929).” 9

The above examples demonstrate that the practice of
searching bisectly among version histories to look for bug-
inducing commits is common and feasible, even for large-
scale open-source projects. These examples also shed lights
on the design of our approach in this study.

2.2 Motivating Example

The previous subsection presents our observations from both
open source communities and industry, which motivates us

to leverage the information of bug-inducing commits for
automated fault localization. However, commits are often
large in size and tangledwith codemodifications formultiple
purposes [28]. For example, we investigated the identified
bug-inducing commits for the Chart project from DEFECTS4J
[31], and found their average size (i.e., number of modified
statements) is 436.2 (with a median value of 165). However,
the average size of the fixing patches of the corresponding
bugs is 3.92 (with a median size of 2). Therefore, locating the
buggy code entities in a bug-inducing commit is challenging.

We propose to build a historical spectrum along the ver-
sion histories to address the challenge. Specifically, we lever-
age those commits, which are made after the bug-inducing
commit but neither introduce nor fix the bug, to help pin-
point the buggy code entities. Those commits are referred as
non-inducing commits. Fig. 5 shows the concept of historical
spectrum. Suppose vt is the target version for fault localiza-
tion, and ci is the bug-inducing commit since the bug-reveal-
ing tests start to fail since version vi after ci is committed.
Those commits made after ci but neither introduce nor fix
the bug are non-inducing commits (e.g., ciþ1). We build a his-
torical spectrum by analyzing those code entities modified in
the bug-inducing commits and non-inducing commits (i.e.,
those commits displayed in shadow as shown in Fig. 5). Our
key insight is that those code entities modified by more bug-
inducing commits but fewer non-inducing commits are more likely
to be the root cause of the bug.

Let us illustrate our insight using a concrete example
shown in Fig. 4, which is adapted from the bug Lang 6 in the
DEFECTS4J benchmark [31]. In this example, the target version
for bug localization is #0b5c5d1, and the buggy statement is
line 95. However, the suspicious value of the buggy state-
ment reported by the state-of-the-art technique [11] using
formula Ochiai [30] is 0.180. It is only ranked at 98th in the
suspicious statement list, and there are many ties (e.g., lines
94, 95, 96). These indicate that, conventional SBFL cannot
effectively locate the fault. The bug-inducing commit of this
bug is #b4255e6, and the bug-revealing tests start to fail after
this commit is adopted in the Lang project. Intuitively, those
statements introduced by this commit (i.e., statements 88
and 89 in Fig. 4 a) are more likely to be the root cause of this
bug. Therefore, we should increase the suspiciousness of
statements 94 and 95 in the target version correspondingly
(since statement 94 and 95 in #0b5c5d1 are evolved from
statement 89 and 90 in #b4255e6, respectively). Meanwhile,
we also observe another commit #0cb2ca8 as shown in
Fig. 4b, which was made after the bug-inducing commit
#b4255e6 but before the target version (commit #0b5c5d1). It
changed statement 89 (i.e., evolved to statement 94 in the tar-
get version). However, this commit did not change the status
of the bug-revealing tests. This indicates that statement 94 in
the target version is less likely to be the root cause as com-
pared with statement 95. Therefore, we can decrease the

Fig. 2. What information of version histories is useful for debugging?. Fig. 3. In which ways have you ever leveraged bug-inducing commits?.

3. https://jira.apache.org/jira/browse/SOLR-11020
4. https://jira.apache.org/jira/browse/SOLR-8788
5. https://bugs.llvm.org/show_bug.cgi?id=11614
6. https://bugs.llvm.org/show_bug.cgi?id=8284
7. https://bugs.llvm.org/show_bug.cgi?id=12581
8. https://jira.apache.org/jira/browse/ACCUMULO-4674
9. https://jira.apache.org/jira/browse/ACCUMULO-3942

WEN ET AL.: HISTORICAL SPECTRUM BASED FAULT LOCALIZATION 2351

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

https://jira.apache.org/jira/browse/SOLR-11020
https://jira.apache.org/jira/browse/SOLR-8788
https://bugs.llvm.org/show_bug.cgi?id=11614
https://bugs.llvm.org/show_bug.cgi?id=8284
https://bugs.llvm.org/show_bug.cgi?id=12581
https://jira.apache.org/jira/browse/ACCUMULO-4674
https://jira.apache.org/jira/browse/ACCUMULO-3942

suspiciousness of statement 94. As a result, we can break the
tie of lines 94, 95, and 96, which further confirms our intui-
tion that the version histories can help relieve the tie issue. In
this way, we can better locate the buggy statement (i.e., state-
ment 95 in Fig. 4c). The priority of other statements that are
irrelevant to the bug in the bug-inducing commit #b4255e6
can be similarly lowered.

2.3 Challenges

Three major challenges hinder the process of leveraging ver-
sion histories in fault localization.

1) Identifying bug-inducing commits precisely is difficult.
Whether we can identify the bug-inducing commits
for all bug-revealing tests is unknown since some tests
might be complex in their designs and cannot be suc-
cessfully executed on previous versions. To address
this challenge, we minimize the testing logic for each
bug-revealing test before executing it to make it runn-
able onmore previous versions (see Section 3.1).

2) Precisely tracking code evolution is challenging. Precisely
mapping code entities from the inducing version (i.e.,
the version after the bug-inducing commit is made)
to the target version is challenging since the gap
between these two versions might be large. As shown
in the example in Fig. 4, the buggy statement is line 89
at the inducing version while it evolves to line 95 at
the target version. To resolve this challenge, we lever-
age history slicing [29] to track the evolutions of code
entities from the inducing version to the target ver-
sion (see Section 3.2).

3) Handling the noises of tangled commits is non-trivial.
commits are usually tangled with other irrelevant
code modifications [28] and large in their sizes, and
thus it is challenging to differentiate relevant state-
ments from them. For example, we investigated the
identified bug-inducing commits for the Chart project
from DEFECTS4J, and found their average size (i.e., the
number of modified statements) is 436.2 (with a
median of 165). However, the average size of the fix-
ing patches for the corresponding bugs is 3.92 (with a
median of 2). Those irrelevant statements might bring
noises and thus decrease the performance of fault

localization. To tackle this challenge, we apply those
techniques designed for conventional SBFL (i.e.,
Ochiai [14] and Tarantula [32]) on the historical spec-
trum, to differentiate those buggy statements from
other irrelevant ones that are modified in the bug-
inducing commits. We also examine whether those
suspicious code entities evolved from bug-inducing
commits have been executed by bug-revealing tests
in the target version in order to further reduce noises
in the historical spectrum (see Section 3.3).

3 APPROACH

We propose Historical Spectrum based Fault Localization in
this paper. HSFL takes the source code, the version history
and the associated test suite of a project as inputs. It works
at the statement level and contains three steps. The overview
of HSFL is shown in Fig. 6.

First, it identifies the bug-inducing commit from the ver-
sion histories for each bug-revealing test case to identify a set
of suspicious code entities. Second, HSFL constructs a histor-
ical spectrum (i.e., denoted as Histrum) to trace the evolu-
tions of each suspicious code entity from the bug-inducing
version (i.e., the version after the bug-inducing commit is
adopted) to the target version via history slicing [29]. Third,
HSFL computes the suspicious score for each code entity
based on Histrum. In particular, it works like SBFL, where a
bug-inducing commit and a non-inducing commit are analo-
gous to a failing test and a passing test in SBFL, respectively.
As such, the ranking formulae designed for SBFL (e.g.,
Ochiai [30] and Tarantula [32]) can be deployed to compute
the suspicious score based on the Histrum. HSFL further lev-
erages the conventional coverage based spectrum used in
SBFL to further differentiate buggy code entities from non-
buggy ones in Histrum to generate the final rankings.

3.1 Identifying Bug-Inducing Commits

As observed from the open source community, developers
identify bug-inducing commit by finding the first commit on
which the bug-revealing test starts to fail. For instance,
debugging activities such as “Confirmed, the test passes before
this commit (LUCENE-6758) and fails after” [41] can be fre-
quently observed in bug reports. Based on such observations
and a recent study [25], we formally define bug-inducing
commits as follows in this study:

Definition 1. Given a bug manifested by a bug-revealing test tf ,
the associated bug-inducing commit is the commit before
which tf passes and after which tf fails.
To identify the bug-inducing commits, HSFL conducts

binary search on the complete version history (automated by
git bisect) following the heuristic used by existing approaches

Fig. 4. An adapted example from bug Lang 6.

Fig. 5. Concept of historical spectrum.

2352 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

[25], [42], [43]. Such a heuristic is also adopted by developers
from open source community as observed in the debugging
practices discussed in Section 2.1. Specifically, we extract the
bug-revealing test tf from the target version and then execute
it on older versions of the program. However, identifying the
bug-inducing commit precisely for a bug-revealing test tf can
be non-trivial due to the following reasons.

First, a unit test case might involve the testing logics of
several bugs. To ease the explanation, we refer to the mani-
festation of a bug revealed by a bug-revealing test as the
“failing signature”, which includes the information about
the point of the failure and the error message generated in
the failing test run. For example, the test method testCreate-
Number() in project Lang tests the functionalities of multiple
bugs (i.e., issues Lang-521 and Lang-693) as shown in Fig. 7.
Suppose our target bug for fault localization is Lang-521 here.
However, running such a test case on previous versions
might fail due to different bugs, manifested by different fail-
ing signatures thrown by the test (e.g., “createNumber LANG-
521 failed, expected..., but ...” or “createdNumber LANG-693
failed, expected..., but ...”). This is because some bug fixes (e.g.,
fix for Lang-693)might be reverted if we roll back to previous
versions. As a result, the test case will fail if it is executed on
these versions. This will hinder us to identify the bug-induc-
ing commit for the target bug since the bug-revealing test
fails due to another bug (i.e., Lang-693). Our approach takes
the following steps to address this challenge. It first analyzes
the failing signature of the bug-revealing test executed on
the target version to obtain the failure point triggering the
target bug (e.g., the assertion statement line at 21 in Fig. 7). It
then comments out other assertion statements (e.g., line 24)
within the method to remove those testing logics for other
bugs. Those statements constructing the data structures for
assertion statements (e.g., line 20) will be kept to make the
code of the bug-revealing assertions runnable.

Second, some test cases might require extra self-defined
features to construct complex objects for testing. These test
cases might not be able to be executed successfully on previ-
ous versions if the required features have not been imple-
mented on that version. For example, some test cases of
project Lang require an extra class FormatFactory to con-
struct objects to test the functionalities in class ExtendedMes-
sageFormat. However, class FormatFactory is introduced in
version #695289c. Therefore, those tests requiring this class

cannot be run successfully on those versions prior to
#695289c. For such cases, identifying the bug-inducing com-
mit precisely is difficult. To handle these cases, we introduce
the concept of likely-inducing commits. Likely-inducing com-
mits include the first commit onwhich the bug-revealing test
fails with the targeted failing signature and those commits
onwhich the bug-revealing test is unable to run successfully.

For each bug-revealing test tf , we can identify a bug-
inducing commit or a range of likely-inducing commits.
The identified bug-inducing commit can be either an initial
code commit or a subsequent code commit during software
evolution [23]. If the bug-inducing commit is an initial code
commit, it indicates that the first version of the source file
contains the bug. The bug is introduced by subsequent code
modifications otherwise. The initial code commit is usually
larger in its size compared with subsequent commits [23].
Different types of inducing commits would have the
impacts on the performance of fault localization, which is
discussed in Section 6.2. For a target bug, we can identify a
set of bug-inducing commits CI or a set of likely-inducing
commits CL, since there might be multiple bug-revealing
tests for the target bug. Those commits submitted prior to
the target version and do not belong to either CI or CL are
denoted as non-inducing commits CN with respect to the tar-
get bug since they do not change the status of the bug-
revealing tests. For each commit c 2 CI _ CL, we denote the
statements introduced (i.e., modified or originally added) in
it as suspicious code entities (i.e., denoted as SH).

3.2 Constructing Historical Spectrum

To leverage the suspicious code entities SH obtained from
bug-inducing commits to locate faults at the target version vt,
HSFL constructs Histrums for SH so as tomap the statements
in SH to the ones in the target version vt. It also tracks the
evoluations of SH to see if they have been further modified
by other commits subsequent to the bug-inducing commit.

Fig. 8 shows an example of a constructed historical spec-
trum. Suppose c1 is a bug-inducing commit, and statements
5 and 6 are modified by c1. In order to leverage such infor-
mation to locate faults in the target version v5, Histrum
tracks the evolution of each statement to see whether it has
been further modified by other commits. For example, state-
ment 6 has been further modified by two non-inducing
commit (i.e., c2 and c3) and evolves to statement 8 at v5.
Statement 5 has been further modified by one bug-inducing

Fig. 6. Overview of HSFL.

Fig. 7. A test case of project lang. Fig. 8. An example of historical spectrum.

WEN ET AL.: HISTORICAL SPECTRUM BASED FAULT LOCALIZATION 2353

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

commit (i.e., c4) and evolves to statement 7 at v5. Here, c4 is
another bug-inducing commit identified by other bug-
revealing test for the same bug.

To construct historical spectrum,we use history slicing [29]
to track themodification of SH from the bug-inducing version
to the target version. Without loss of the generality, we sup-
pose the version history is hv1; . . . ; vj; vjþ1; . . . ; vni, where v1 is
the bug-inducing version and vn is the target version. For
each pair of two consecutive versions hvj; vjþ1i, we use the
function Mj 7! jþ1ðsÞ to represent the statement in vjþ1 that is
mapped from the statement s in vj. We leverage GUMTREE [44]
to analyze the changes between two versions and remove
those non-semantic changes (e.g., formatting or modification
of comments). There are three different types of changes
made between any two versions, which are deletion, insertion,
and update. Fig. 9 shows the change hunks for these three
types of changes, where A and C denote the contextual part
and B denotes the changed part. Since the statements in
hunksAj and Cj in version vj are unchanged, we can directly
map them to those in hunksAjþ1 and Cjþ1 in the next version
vjþ1. There are three cases of the changed hunks. The map-
pings for statements in a deleted or inserted hunk can be read-
ily built as follows. In the case of deletion,Mj 7! jþ1ðsÞ ¼ null;
s 2 Bj, since the statements in hunk Bj are deleted and thus
the mappings are null. In the case of insertion, there are no
statements in vj that can bemapped to the statements in hunk
Bjþ1 at version vjþ1. The case for update is more complicated.
A continuous set of statements Bj are modified to Bjþ1 as
shown in Fig. 9c. To find the optimum mappings from Bj to
Bjþ1, we follow the work of history slicing [29] and approach
it as the problem of finding the minimum matching of a
weighted bipartite graph. The weight between any two lines
as shown in Fig. 9c is computed as their Levenshtein Edit
Distance [45].

A bipartite graph is a graphwhose vertices can be divided
into two disjoint and independent sets such that every edge
connects a vertex in one set to another. In our setting, we
regard each statement as a vertex, and thus we have two dis-
joint sets of vertices Bj and Bjþ1. We connect each statement
inBj to each of the statements inBjþ1 with the weight of Lev-
enshtein Edit Distance [45] between these two lines of state-
ments. For example, as shown in Fig. 9c, we connect line 2 in
Bj to each of the statements inBjþ1 (i.e., line 2 to 4). To obtain
the Levenshtein Edit Distance, we first tokenize each line of
statement to a vector of words following existing heuristics
[23]. We then calculate the minimum number of single-word
edits (insertions, deletions or substitutions) required to
change one vector of words into the other. The smaller the
number, the higher similarity between these two statements.
We finally find the minimum weight bipartite matching
using the Kuhn-Munkres algorithm [46], and record the

identified best mapping between these two hunks in
function Mj 7! jþ1. In our example shown in Fig. 9c,
Mj 7! jþ1ð5Þ ¼ 4 andMj 7! jþ1ð4Þ ¼ null.

Our goal is to obtain M1 7! NðsÞ, which finds the state-
ment in vn that is mapped from the statement s in v1.
Using the function Mj 7! jþ1ðsÞ for each two consecutive
versions, we can gradually calculate M1 7! N ¼ MN�1 7! N�
MN�2 7! N�1 � . . . �M1 7! 2ðsÞ. Note that not all statements in
SH can be mapped to the target version since some state-
ments might be deleted during evolution and the mapping
function will return null for such cases. Using the function
M1 7! N , we can successfully map the statements in SH in the
bug-inducing version to the statements in the target version.
Similar procedures are conducted for those likely-inducing
commits in CL.

3.3 Ranking Suspicious Statements

After mapping SH to the target version based on the His-
trum, we can obtain a set of suspicious statements SC at the
target version vt. Specifically, SC = fM1 7! NðsÞ; 8s 2 SHg.
HSFL then ranks the statements in SC to locate faults. The
main challenge is to differentiate the buggy statements from
those irrelevant ones since SC might contain noises (i.e.,
statements irrelevant to the bugs).

To address this challenge, HSFL first leverages the histor-
ical spectrum built in the second step. Specifically, we lever-
age the history spectra information to compute their
suspiciousness of being the root cause of the targeted bug.
The intuition is that those code entities modified by more
bug-inducing commits but fewer non-inducing commits are
more likely to be the root cause of the bug. It works like
SBFL, where a bug-inducing commit and a non-inducing
commit are analogous to a failing test and a passing test in
SBFL, respectively. As such, the techniques designed for
SBFL (e.g., Ochiai [30] and Tarantula [32]) can be deployed
to compute the suspicious score based on the historical
spectrum. Specifically, we use Ochiai [30] by default to com-
pute the suspicious score for each statement s 2 SC in
HSFL since it has been reported to be the optimum formula
for SBFL [2]. In particular, we investigate the impact of dif-
ferent SBFL formulae on HSFL in Section 5.2. Suppose that
ci is the bug-inducing commit of s and it has been further
modified by a list of commits C ¼ hci; . . . ; cj; cjþ1; . . . ; cni, we
can calculate its suspicious as

Histrumðs; ciÞ ¼ induceðsÞffi
NI � ðinduceðsÞ þ noninduceðsÞÞp ;

(1)

in which induceðsÞ denotes the number of inducing com-
mits that modified statement s, specifically, induceðsÞ ¼
jfc : c 2 CI ^ c 2 Cgj; noninduceðsÞ is the number of non-
inducing commits that modified statement s, specifically,
noninduceðsÞ ¼ jfc : c 2 C ^ c =2 CIgj; NI denotes the total
number of bug-inducing commits which is jCI j. Let us
further illustrate this using our example shown in Fig. 8.
The suspicious score for statement 7 at the target version
is 1, which is calculated as 2=

ffi
2 � ð2þ 0Þp

, while the sus-
picious score for statement 8 is 0.408 (1=

ffi
2 � ð1þ 2Þp

).
Therefore, statement 7 is more likely to be the root cause
of the bug compared with 8.

Fig. 9. Line mappings between two consecutive versions of deleted,
added and updated change hunks.

2354 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

However, a statement s at the target version might have
multiple values obtained from the Histrum model since it is
possible that s is affected by multiple bug-inducing commits.
For the example shown in Fig. 8, HSFLwill also build another
historical spectrum starting from v4 after the bug-inducing
commit c4 is adopted. Therefore, statement 7 in the target ver-
sion will have another suspicious value. We use the maxi-
mum value ofHistrumðs; ciÞ as the final score for statement s.
Specifically,HistrumðsÞ ¼ maxfHistrumðs; ciÞ; ci 2 CIg.

To further help differentiate buggy statements from irrel-
evant ones in SC , HSFL leverages the conventional coverage
based spectrum used in SBFL. This intuition follows that of
existing FL techniques [2], [11], where buggy statements are
more likely to be executed by failing tests than passing tests
in the target version vt. By integrating this with Histrum,
HSFL produces the final results

HSFLðsÞ ¼
ð1� aÞ � SBFLðsÞ s 2 A ^ s =2 SC

ð1� aÞ � SBFLðsÞ þ a �HistrumðsÞ s 2 A ^ s 2 SC

0 otherwise;

8<
:

(2)
in which A denotes the set of suspicious statements exe-
cuted by the bug-revealing tests at vt, and a is the weight of
combining Histrum and SBFL. By default, we set a to 0.5.
We investigate the effect of a in the overall performance of
HSFL in Section 5.3. In Equation (2), we set the final scores
as 0 for those statements that have not been executed by the
bug-revealing tests on vt. The intuition is that a statement is
unlikely to be the root cause if it has not been executed by
any of the bug-revealing tests on the targeted version fol-
lowing existing studies [2], [11], [33]. In this way, HSFL can
further eliminate the nosies in SC caused by the potential
tangled statements in the bug-inducing commits.

For likely-inducing commits in CL and the corresponding
suspicious buggy statements SH , similar procedures are con-
ducted. However, since those commits do not definitely intro-
duce the bug, we decrease the effects of theHistrummodel by
adding a weight to the value obtained from Equation (1). Spe-
cifically,HistrumLðsÞ ¼ HistrumðsÞ=jCLj. The larger range of
the likely-inducing commits, the smaller weight it gets. The
intuition is that the likelihood of each likely-inducing commit
in set CL to be the bug-inducing commit is decreasingwith the
increase of size of CL.

Using the final scores obtained by HSFL(s), we then rank
all the suspicious statements at the targeted version vt.

4 EXPERIMENT SETUP

4.1 Subjects

We evaluate the effectiveness of HSFL on the benchmark
dataset DEFECTS4J [31]. This benchmark contains substantial

real bugs extracted from large open source projects, and it
was built to facilitate controlled experiments in software
debugging and testing research [31]. DEFECTS4J has been
widely adopted by recent studies on fault localization and
program repair (e.g., [11], [47], [48], [49]). Following existing
studies [12], [13], we use all the five projects in DEFECTS4J of
version 1.0.1 with a total of 357 real bugs as subjects for our
experiments. Their demography is shown in Table 1.

4.2 Measurements

To measure the effectiveness of HSFL, we adopt the follow-
ing three widely-used metrics in our study [12], [13], [23].

Top-N. This metric reports the number of bugs, whose
buggy entities (i.e., statements in our evaluation setting) can
be discovered by examining the top NðN ¼ 1; 2; 3; . . .) of the
returned suspicious list of code entities. The higher the
value, the less efforts required for developers to locate the
bug, and thus the better performance.

MRR. Mean Reciprocal Rank [50] is the average of the
reciprocal ranks of a set of queries. This is a statistic for eval-
uating a process that produces a list of possible responses to
a query [51]. The reciprocal rank of a query is the multiplica-
tive inverse of the rank of the first relevant answer found.
This metric is widely used to evaluate the ability to locate
the first buggy statement for a bug [13], [23]. The larger the
MRR value, the better the performance.

MAP. Mean Average Precision [52] is by far the most com-
monly used traditional information retrieval metric. It pro-
vides a single value measuring the quality of information
retrieval performance [51]. It takes all the relevant answers
into consideration with their ranks for a single query.
This metric is also widely used to evaluate the ability of
approaches to locate all the buggy statements of a bug [13],
[23]. The larger theMAP value, the better the performance.

Whenmultiple statements have the same suspicious score,
we use the average rank to present their final rankings, fol-
lowing the strategy to handle the tie issues widely adopted
by existing fault localization techniques [11], [12], [53], [54].

4.3 Research Questions

This study aims to answer the following research questions.
� RQ1: How does HSFL perform in locating real bugs?
To answer this question, we apply HSFL to the 357 real

bugs from DEFECTS4J as shown in Table 1, and then evaluate
the results using the metrics described in Section 4.2. We
also compare our results with those obtained by conven-
tional SBFL reported by the state-of-the-art technique [11].
We select SBFL techniques as the baseline in this RQ, since
SBFL is the most widely investigated technique and has
been reported to achieve good performance compared with
the others [55]. We compare HSFL with other baselines sys-
tematically in the subsequent research questions.

� RQ2: How do different formulae affect the performance
of HSFL?

We use Ochiai [30] by default in HSFL since it has been
reported to be the best formula for SBFL [2], [11]. However,
there are multiple formulae proposed and it is yet unknown
whether Ochiai is the optimum for HSFL. In this research
question, we choose the five best-studied SBFL formulae
[2], [11] and investigate how these different formulae affect
the performance of HSFL. The five adapted SBFL formulae

TABLE 1
Subjects for Evaluation

Subject #Bugs KLOC Test KLOC #Test Cases

Commons Lang 65 22 6 2,245
JFreeChart 26 96 50 2,205
CommonsMath 106 85 19 3,602
Joda-Time 27 28 53 4,130
Closure Compiler 133 147 104 7,929

Total 357 378 232 20,111

WEN ET AL.: HISTORICAL SPECTRUM BASED FAULT LOCALIZATION 2355

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

for HSFL are shown in Table 2. In these formulae, induceðsÞ,
noninduceðsÞ and NI are defined in the same way as
described in Equation (1), and NN denotes the total number
of non-inducing commits for the target bug.

� RQ3: Howdoes theweight a affect HSFL’s performance?
HSFL sets the weight to 0.5 by default to let the coverage

based spectrum has the same weight as Histrum. However,
it is yet unknown whether the default value is the optimum.
In this research question, we investigate the effect of this
weight a on the overall performance of HSFL. Specifically,
we change the weight from 0.0 to 1.0 with a step size of 0.1,
and then examine the performance of HSFL based onOchiai.

� RQ4: Can HSFL improve the performance of search-
based automated program repair?

Automated program repair techniques extensively rely
on SBFL to generate the fault space [7], [9], [47], [48], which
affects the search space of search-based APR techniques [7].
Existing search-based APR techniques are known to suffer
from the search space explosion problem [8]. Therefore, bet-
ter fault space is always demanded to improve the effi-
ciency for searching the correct patches [56]. This research
question investigates the practical usefulness of HSFL in
improving the performance of the state-of-the-art search-
based APR techniques.

� RQ5: Can HSFL outperform other families of fault
localization techniques?

Besides spectrum-based fault localization techniques,
there are many other families of techniques proposed over
the years with the aim to locate suspicious code elements at
the statement level. Based on recent studies and a systematic
survey [11], [55], we summarize existing techniques to the
following nine families:

Different techniques are proposed via leveraging diver-
gent sources of information, such as the test coverage, test
results from mutating the program, dynamic program dependen-
cies, crash reports and so on. Moreover, recent studies pro-
posed the hybrid techniques, which leverage multiple
sources of information. For instance, Pearson et al. proposed
to combine mutation-based and spectrum-based techniques
together [11]. Learning-based techniques also combine mul-
tiple sources of information. Specifically, they treat the
results of each technique as individual features, and then
leverage machine learning techniques to learn the optimum
way to combine them automatically. Learning-based techni-
ques differ themselves from hybrid ones in that they need a
separate set of data for model training.

In this RQ, we compare HSFL with these techniques with
the aim to further investigate the effectiveness of HSFL. IR-
based and History-based are excluded in our comparison
since these two families of techniques have been reported to
achieve extremely poor performance at the statement level
[55]. We compare and integrate HSFL with the state-of-the-
art learning-based technique in a separate research question
(i.e., RQ7) since it requires to divide the data into a training
and a testing part and then involves a training process. As a
result, 10 baselines from six different families have been
selected for comparison in this RQ in total. We compare
their performances with HSFL based on the DEFECTS4J data-
set in terms of metrics MAP, MRR and Top-N.

� RQ6: Can our Histrum model boost the performance of
other families of fault localization techniques?

Our proposed Histrum model provides a novel perspec-
tive to locate faults in terms of evolution history, and it can
actually be combined with any families of fault localization
techniques besides SBFL. In this RQ, we investigate whether
Histrum can boost the performance of other types of fault
localization as displayed in Table 3. Specifically, similar to
Equation (2), we integrate Histrum with a FL technique as
follows:

BoostðsÞ ¼
ð1� aÞ � FLðsÞ s 2 A ^ s =2 SC

ð1� aÞ � FLðsÞ þ a �HistrumðsÞ s 2 A ^ s 2 SC

0 otherwise

8<
: ;

(3)

in which FL denotes an existing FL technique (e.g., MUSE
[57], MCBFL [11]), A denotes the set of suspicious state-
ments identified by the FL technique, and a is the combin-
ing weight. We then compare the boosted results after
integrating Histrum with the results of the original FL tech-
nique on the DEFECTS4J benchmark.

� RQ7: Can our approach boost the performance of learn-
ing-to-rank techniques?

Learning-to-rank techniques were proposed to combine
multiple FL techniques together [55], [63]. The basic idea is to

TABLE 2
The Five Adapted SBFL Formulae for HSFL

Name Formula

Tarantula [32] SðsÞ ¼ induceðsÞ=NI
induceðsÞ=NIþnoninduceðsÞ=NN

Ochiai [30] SðsÞ ¼ induceðsÞffi
NI�ðinduceðsÞþnoninduceðsÞÞ

p
Op2 [34] SðsÞ ¼ induceðsÞ � noninduceðsÞ

ðNNþ1Þ

Barinel [35] SðsÞ ¼ 1� noninduceðsÞ
noninduceðsÞþinduceðsÞ

DStar [33] SðsÞ ¼ induceðsÞ?
noninduceðsÞþNI�induceðsÞ

We used ? ¼ 2, the most thoroughly explored value [11]

TABLE 3
Popular Families of FL Techniques

Family Techniques Description

Spectrum-based Ochiai [30]
Dstar [33]

utilizing test coverage
information

Mutation-based MUSE [57]
Metallaxis [58]

utilizing test results from
mutating the program

Slicing-based Union [55], [59],
Intersection [55], [59],
Frequency [55], [59]

utilizing dynamic program
dependencies

Stack
trace-based

StackTrace [37] utilizing crash reports
embedded in bug reports

Predicate
swithcing

PredicateSwitching
[55], [60]

utilizing test results from
mutating the results of
conditional expressions

IR-based BugLocator [61] utilizing the token information
of bug reports

History-based BugSpots [62] utilizing the development
history

Hybrid MCBFL [11] combing different techniques
using heuristics

Learning-based Learning-to-rank [55] combing different techniques
utilizing machine learning
techniques

2356 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

treat the suspicious score produced by each technique as a
unique feature and then use machine learning techniques to
find the model that ranks the faulty statement as high as pos-
sible. In this RQ, we investigate whether our proposed tech-
nique can be leveraged as a feature to boost the performance
of existing learning-to-rank techniques. Specifically, we
choose the state-of-the-art learning-to-rank technique [55]
for investigation.

Pearson et al. have evaluated multiple SBFL techniques
on the DEFECTS4J recently [11]. They provided the oracle (i.e.,
the buggy statements) and the conventional coverage-based
spectrum for each bug. Zou et al. recently have conducted a
systematic empirical study to investigate different families
of FL techniques and their combinations. They provided
their experimental data and the results of different families
of FL techniques as well as the newly proposed learning-to-
rank technique. To facilitate the reproduction of our evalua-
tion results, we leverage those publicly available dataset to
generate the results of SBFL and other baseline approaches
instead of instrumenting and computing by ourselves. We
implemented HSFL in Java. Our experiments are run on a
CentOS server with 2x Intel Xeon E5-2450 CPU@2.1 GHz
and 192 GB physical memory. All the experimental data are
publicly available at: https://github.com/justinwm/HSFL

5 EVALUATION RESULTS

In this section, we answer the four designed research
questions.

5.1 RQ1: Effectiveness of HSFL

To answer RQ1, we present the results of HSFL evaluated on
the five projects shown in Table 1. Specifically, we use Ochiai
[30] in Histrum and the default combining weight a ¼ 0:5 in
HSFL. The results of SBFL are also generated using Ochiai.
Fig. 10 displays the results of HSFL and SBFL in terms of
MAP and MRR, which show that HSFL outperforms SBFL
for all the five subjects in terms of both of the two metrics.
The improvement of MAP ranges from 16.0 to 57.2 percent,

and the improvement of MRR ranges from 22.8 to 94.0 per-
cent. On average, HSFL is able to achieve an improvement of
28.3 and 40.8 percent forMAP andMRR respectively.

Fig. 11 shows the results of HSFL and SBFL evaluated by
metric Top-N. HSFL ranks the buggy statement at Top-1 for
64 bugs, which is 28more than SBFL, achieving an significant
improvement of 77.8 percent. HSFL ranks the buggy state-
ments for 146 bugs within top 5, 177 within top 10, and 205
within top 20, achieving an improvement of 33.9, 18.0 and
10.8 percent respectively. The rankings of buggy statements
is crucial to measure the usefulness of fault localization tech-
niques. Developers usually only spend the efforts to inspect
the top-ranked suspicious statements. e.g., over 70 percent
developers only check Top-5 ranked elements [6]. These
results shown in Figs. 10 and 11 indicate that HSFL is more
effective in locating bugs compared with SBFL and is more
useful for developers in practice.

5.2 RQ2: Effect of Different Formulae in HSFL

To answer RQ2, we present the results of HSFL using differ-
ent formulae as shown in Table 2 in the Histrum model. For
the combining weight a, we still use the default value 0.5.
Note that when we use a formula (e.g., DStar [33]) in His-
trum, we also adopt the same formula for the conventional
SBFL in Equation (2). Tables 4 and 5 show the results of
MAP/MRR and Top-N respectively. In these two tables, dif-
ferent columns represent different metrics evaluated while
different rows represent the projects with different techni-
ques used. The bottom portions of the two tables show the
summary of the results (i.e., the weighted average results

Fig. 10. Results of MAP and MRR of HSFL and SBFL.

Fig. 11. Results of Top-N of HSFL and SBFL.

TABLE 4
Performance of HSFL and SBFL Using Different

Formulae Evaluated by MAP and MRR

The highest improvement for each subject is highlighted in

WEN ET AL.: HISTORICAL SPECTRUM BASED FAULT LOCALIZATION 2357

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

https://github.com/justinwm/HSFL

for MAP and MRR, and the sum numbers for Top-N).
Fig. 12 displayed the weighted average results over the five
subjects of SBFL and HSFL in terms of MAP and MRR using
the five different formulae.

In terms of MAP and MRR, HSFL achieves better perfor-
mance than SBFL for all subjects using different formulae.
On average, adopting Ochiai in HSFL achieves the optimum
performance (i.e., with an average MAP of 0.246 andMRR of
0.288), and also achieves the optimum improvement com-
pared with SBFL (i.e., with an average improvement of
28.3 percent for MAP and 40.8 percent for MRR). The for-
mula Barinel achieves the second best performance with an
average MAP of 0.238 and MRR of 0.272, and it achieves an

average improvement of 26.0 and 38.3 percent for MAP and
MRR respectively. Adopting the formulae Tarantula, DStar
and Op2 in HSFL also achieves better results compared with
SBFL. Specifically, the improvements for MAP are 25.5, 17.8
and 16.1 percent while the improvements for MRR are 34.1,
23.2 and 21.2 percent.

Similar results are observed using the metric Top-N.
Adopting the formula Ochiai in HSFL achieves the optimum
performance (e.g., locating 64 bugs at Top-1 and 146 at Top-5),
followed by the formula Barinel (e.g., locating 59 bugs at Top-
1 and 140 at Top-5). HSFL also outperforms SBFL by adopting
the other three formulae in theHistrummodel.

Adopting Ochiai [30] in HSFL achieves the best perfor-
mance on average, we then use the one-sided Mann-Whit-
ney U-Test [64] to see whether it is significantly better than
the other four techniques. The results show that the perfor-
mance of adopting Ochiai [30] in HSFL is only significantly
better than that of adopting Op2 (p < 0:05) while the differ-
ence is not significant for the other three techniques. These
indicate that techniques Ochiai [30], Tarantula [32], DStar
[33] and Barinel [35] are suggested to be applied in HSFL.
However, all these techniques are designed for the spec-
trum built from conventional testing coverage, whether our
proposed historical spectrum requires specific designed
techniques to achieve the optimum performance remains
unknown since these two types spectrum are different
intrinsically. We leave the design of specific techniques for
Histrum as our future work.

5.3 RQ3: Effects of the Combining Weight a

To answer RQ3, we present the results of HSFL using the
formula Ochiai [30] while using a series of different weights
a (i.e., from 0.0 to 1.0 with a step size of 0.1) to combine His-
trum and SBFL in HSFL. Fig. 13 plots the results of HSFL
with respect to MAP and MRR for all the subjects. Specifi-
cally, the x-axis represents the weight a used in Equation (2)
and the y-axis represents the values of MAP and MRR.
From the results, we can see that the performance HSFL
share similar patterns for the five different subjects. The per-
formance of HSFL is increasing when a is small (� 0:5). It
reaches its peak when a is around 0.5 and 0.7, and then
starts to decrease when a continues increasing. When aver-
aged over all the five subjects, HSFL achieves its optimum
performance when a is 0.5. These results indicate that HSFL
obtain its best performance when the Histrum model and
SBFL model are considered to be similarly important.

When a ¼ 0, HSFL is equivalent to the conventional
SBFL. When a ¼ 1, HSFL only includes Histrum model. As

TABLE 5
Performance of HSFL and SBFL using Different

Formulae Evaluated by Top-N

Pr Tech
Top-1 Top-5 Top-10 Top-20

SBFL HSFL SBFL HSFL SBFL HSFL SBFL HSFL

Lang

Tarantula 5 11 26 28 35 37 42 46

Ochiai 4 11 28 29 36 39 42 47

Dstar 4 11 29 32 38 41 44 51

Op2 4 11 26 29 35 39 41 47

Barinel 5 12 27 28 36 39 43 47

Math

Tarantula 18 18 36 50 47 63 59 70

Ochiai 19 21 35 49 47 61 59 70

Dstar 18 19 32 47 44 60 56 69

Op2 16 16 29 43 39 57 52 65

Barinel 18 19 36 50 47 63 59 70

Chart

Tarantula 0 1 5 11 12 16 15 16

Ochiai 1 4 7 14 14 17 16 17

Dstar 2 3 7 10 13 14 14 14

Op2 1 3 6 10 12 13 15 14

Barinel 0 2 6 12 13 17 16 17

Time

Tarantula 1 5 12 12 14 14 17 15

Ochiai 1 6 13 16 15 17 17 18

Dstar 1 5 13 17 15 18 18 19

Op2 2 5 12 12 14 13 16 14

Barinel 1 6 12 13 14 14 17 16

Closure

Tarantula 10 19 24 35 35 43 49 55

Ochiai 11 22 26 38 38 43 51 53

Dstar 16 18 27 29 39 37 48 45

Op2 15 18 28 27 40 38 52 44

Barinel 10 20 24 37 35 42 49 52

Sum

Tarantula 34 54 "59% 103 136 "32% 143 173 "21% 182 202 "11%
Ochiai 36 64 "78% 109 146 "34% 150 177 "18% 185 205 "11%
Dstar 41 56 "37% 108 135 "25% 149 170 "14% 180 198 "10%
Op2 38 53 "39% 101 121 "20% 140 159 "14% 176 184 "5%
Barinel 34 59 "74% 105 140 "33% 145 175 "21% 184 202 "10%

Fig. 12. Average results of SBFL and HSFL in terms of MAP and MRR using different formulae.

2358 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

we can see, only using one of the twomodels in HSFL cannot
achieve the optimum performance, while combining both
models with similar weights performs the best. We found
that using only the SBFL model or the Histrum model will
result in serious tie issues via further investigation, which is
caused by the limited number of bug-revealing tests. Due to
the limited number of bug-revealing tests, SBFL is known to
suffer from the tie issue problem [21], [22]. The Histrum
model also suffers from this problem since the number of
bug-inducing commits is limited as a result of the limited
number of bug-revealing tests (note thatHSFL only identifies
one bug-inducing commit for one bug-revealing test). These
two models complement well to each other, and thus the
combination relieves the tie issue. The combination of His-
trum and SBFL model is expected to relieves the tie issue,
since they use two different spectrum from two divergent
dimensions. This is confirmed by the results displayed in
Fig. 14, which shows the number of non-buggy statements
that are ranked in tie with the buggy statement from the
results returned by only the Histrum model, SBFL and the
combining of them, HSFL. The number of ties returned by
HSFL is significantly smaller compared with that returned
by SBFL (p ¼ 1:3e-06) using the one-sided Mann-Whitney
U-Test [64]. The number is also significantly smaller com-
pared with that returned by Histrum (p ¼ 2:6e-14). These
results show that our proposed Histrum model can signifi-
cantlymitigate the tie issue of conventional SBFL.

5.4 RQ4: Usefulness of HSFL in Automated
Program Repair

We evaluate the usefulness of HSFL based on the state-of-
the-art search-based APR technique CAPGEN [7] to answer
this RQ. It is well-known that the search-space explosion and
overfitting are the two long-standing open challenges for
search-based APR [7], [8]. In this RQ, we focus on investigat-
ing whether the improvements made by HSFL over the fault
space can alleviate the search-space explosion problem. Spe-
cifically, we leverage HSFL to generate the fault space for
CAPGEN instead of using SBFL. We then investigate the num-
ber of candidate patches required to be validated for CAPGEN

in order to find the first correct patch, and compare it with

that of CAPGEN using SBFL. To avoid the side effects caused
by the overfitting problem, we only selected those bugs that
can be correctly repaired by CAPGEN for comparison (i.e.,
those patches that are semantically equivalent to developers-
provided ones via manual checking). In particular, two
authors were involved in the process of manual checking,
and we also measured the inter-rater reliability score (i.e.,
mean pairwise Cohens kappa [65]) following the latest work
to measure the reliability of this process [66]. Among all the
190 generated plausible patches [7], the authors are asked to
label them as “correct” and “incorrect”, and the obtained
score of the mean pairwise Cohen’s kappa is 0.957. Such a
high score demonstrated the reliability of our manual check-
ing process [65].

This setup for this experiment follows the existing study
which evaluates the effectiveness of fault localization using
automated program repair [10], and Fig. 15 shows the
results for all the bugs that are correctly repaired by CAP-

GEN. The results indicate that the searching efficiency of
CAPGEN can be significantly improved by leveraging HSFL.
For example, for bug Lang 57, due to the improvement of
the fault space generated by HSFL, the correct patch can be
searched 30 times faster. Only for three bugs (Math 57 ,
Math 70 and Math 63), the searching efficiency of CAPGEN

cannot be improved since the fault spaces have not been
improved by HSFL. We further investigated the reasons
behind and found that the bug-inducing commits identified
for these three bugs are “initial” or “likely”, and such com-
mits are large in their sizes and contain lots of noises (i.e.,
irrelevant non-buggy statements). As a result, it makes it
extremely challenging for HSFL to differentiate buggy state-
ments from non-buggy statements. Such negative cases
motivate us to investigate the effects of different types of
identified bug-inducing commits on the performance of
HSFL (see Section 6.2 for more discussions). However, the
first correct patch is ranked only slightly lower (e.g., ranging
from 0.04 to 0.09 percent) using the fault space generated by
HSFL than that by SBFL for these three cases, and the first
correct patch can be searched 3.02 times faster averaged
over all bugs. These results still demonstrate the usefulness

Fig. 13. The performance of HSFL with different combination weight a of histrum.

Fig. 14. The number of ties of the FL results. Fig. 15. Efficiency improved to find the first correct patch.

WEN ET AL.: HISTORICAL SPECTRUM BASED FAULT LOCALIZATION 2359

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

of HSFL in improving the searching efficiency of automated
program techniques, which is significant since search space
explosion is a long-haunting challenge in the domain of pro-
gram repair.

HSFL is also expected to improve the CAPGEN’s effective-
ness (i.e., in terms of the number of correctly repaired bugs)
via prioritizing correct patches before incorrect plausible
ones. However, since CAPGEN already ranks the correct
patches before the incorrect plausible ones for 95.5 percent
of the patched bugs, the improvement that can be made by
HSFL is marginal.

5.5 RQ5: Comparing with Other Families of FL

To answer RQ5, we present the results of HSFL and other
families of FL techniques (i.e., as shown in Table 3) using
the DEFECTS4J dataset. Similar to RQ1, Ochiai [30] is used in
Histrum and the combining weight is set to a ¼ 0:5 by
default in HSFL. The results of all baselines are reproduced
based on the dataset of existing studies [11], [55]. Fig. 16 dis-
plays the results in terms of MAP and MRR, which shows
that HSFL outperforms all baselines in terms of both of the
two metrics. The best family among all the baselines is the
hybrid technique MCBFL, which combines spectrum-based
and mutation-based techniques together [11]. Compared
with MCBFL, HSFL is able to achieve an average improve-
ment of 8.5 and 8.4 percent for MAP and MRR respectively.
The families SBFL (i.e., Ochiai [30] and Dstar [33]) and
MBFL (i.e., Metallaxis [58] and MUSE [57]) achieve poorer
performance than MCBFL. The average improvement
achieved by HSFL over these two families of the techniques
is at least 28.3 and 34.0 percent for MAP and MRR respec-
tively. The performance of other families of techniques are
poorer as displayed in Fig. 16, and this is consistent with a
recent survey [55].

Similar results have been observed in terms of the metric
Top-N as displayed in Table 6. Among all the techniques,
HSFL achieves the optimum performance. Second to HSFL,
the hybrid technique MCBFL achieves the second optimum
performance. Specifically, MCBFL ranks the buggy state-
ments for 59 bugs within top 1, 130 bugs within top 5 and
164 within top 10. The improvement of HSFL over MCBFL
is 8.5, 12.3, 7.9 and 4.1 percent for Top-1, Top-5, Top-10 and
Top-20 respectively.

The results displayed in Fig. 16 and Table 6 demonstrate
the effectiveness of HSFL in locating bugs compared with
different families of FL techniques.

5.6 RQ6: Combining with Other Families of FL

Our proposed model, Histrum, constructs spectrum along
the version histories, which provides information in terms of
a novel perspective to locate faults. As previously investi-
gated in RQ1 and RQ2, it complements well to existing SBFL
techniques. In this RQ, we investigate whether the Histrum
model can also boost the performance of other families of FL
techniques. The Histrummodel can be easily integrated into
other FL techniques as specified in Equation (3). To answer
this RQ, we compare the result of each FL technique with
that after integrating Histrum using Equation (3) on the
DEFECTS4J benchmark.

Table 7 displays the results in terms of MAP, MRR and
Top-N. Specifically, column “FL” denotes the original perfor-
mance of a FL technique without integrating Histrum, while
column “Boost” denotes the results after combiningHistrum.
As revealed by the results, the Histrummodel is able to boost
the performance of any family of FL techniques. For the
hybrid techniques, the performance can be improved by 24.6
and 25.2 percent for MAP and MRR respectively after inte-
grating Histrum; For SBFL techniques, the results have been

Fig. 16. The performance of different families of fault localization techniques in terms of MAP and MRR.

TABLE 6
The Performance of Different Families of Fault Localization Techniques in Terms of Top-N

Rank: Top-N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

HSFL 64 99 116 133 146 155 158 166 173 177 186 187 192 194 195 196 198 198 200 205
Ochiai 37 66 87 98 107 119 124 132 138 148 153 156 161 164 166 172 173 177 179 183
Dstar 38 68 88 98 106 118 122 131 137 148 154 158 162 164 166 171 172 175 177 181
Metallaxis 46 68 86 103 111 117 121 124 135 141 145 150 151 155 158 160 166 171 171 173
MUSE 27 43 56 65 75 80 82 84 90 96 103 107 111 116 120 123 127 129 132 133
Union 8 22 34 44 53 58 64 66 72 75 76 79 81 84 90 93 98 100 100 101
Frequency 7 20 31 39 47 51 60 63 68 70 71 73 76 79 85 88 94 95 99 99
Intersection 7 19 31 39 46 50 54 56 61 64 66 67 69 72 78 81 86 88 89 90
StackTrace 23 31 36 42 46 49 49 49 51 59 64 66 70 72 74 75 77 78 80 81
Predicte 13 18 21 29 30 34 36 36 39 44 51 53 57 61 65 66 68 71 72 75
MCBFL 59 93 107 119 130 136 144 151 160 164 170 175 176 180 184 186 188 193 195 197

2360 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

TABLE 7
Performance of Different Families of Fault Localization Techniques and Their Combinations With our Proposed Histrum Model

Denotes the Best Performance in terms of Different Metrics. Denotes the Performance of HSFL. ‘FL’ Denotes the Performance of an Original FL
Technique without Histrum. ‘Boost’ Denotes the Performance after Combining our HistrumModel.

WEN ET AL.: HISTORICAL SPECTRUM BASED FAULT LOCALIZATION 2361

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

well discussed in previous research questions; For mutation-
based techniques, the performance can be improved by at
least 29.0 and 33.5 percent for MAP and MRR respectively
after combining Histrum; For slicing-based techniques, the
Histrum model can boost the performance by at least
61.4 and 89.3 percent for MAP and MRR respectively; The
improvements for stack trace-based techniques are 65.4 and
75.0 percent in terms of MAP and MRR respectively after
incorporating Histrum, and these ratios are 120.6 and
109.3 percent for predicate switching-based techniques.

One interesting point as revealed by the results is that the
hybrid techniques are able to achieve the optimum perfor-
mance after combining it with Histrum (as displayed with
the background in Table 3). Specifically, it achieves an
average MAP of 0.283 and MRR of 0.333, which outper-
forms HSFL by 14.9 and 15.6 percent respectively.

These results indicate that our proposed Histrum model
complements well to existing techniques. Not only can it
boost the performance of SBFL, but also the other families of
FL techniques. Specifically, combining Histrum with hybrid
techniques is able to achieve the optimumperformance.

5.7 RQ7: Integrating with Learning-to-Rank
Techniques

Recently, Zou et al. proposed to combine all families of FL
techniques via learning-to-rank techniques [55]. Specifically,
it treats the suspicious score generated by each FL technique
as an individual feature, and then leverages rankSVM [67] to
learn the optimummodel based on a separated training data-
set. In total, the results of the following 10 different FL techni-
ques have been selected as features in their experiments:

Techniques Selected as Individual Features. Ochiai, DStar,
Metallaxis, MUSE, Union, Intersection, Frequency, StackTrace,
PredicateSwitching, BugSpots.

The details of these techniques have been well explained
in Table 3. Ten-fold validation has then been adopted to
evaluate the performance of the learned model.

To answer this RQ, we compare the original results using
the above 10 techniques and that after integrating HSFL, in
which case, the results of HSFL have been considered as the
11th feature. The experimental results show that the MAP
andMRR can be improved by 3.7 and 5.4 percent respectively,
and the results in terms of Top-N are displayed in Fig. 17. In
order for comparison, we also display the results of HSFL
and MCBFL since it achieves the optimum performance
among all the baselines as displayed in Table 7. In
summary, the performance of the learning-to-rank technique

has been improved after incorporating our proposed
approach as an individual feature.

6 DISCUSSIONS

6.1 Effectiveness of Identifying Bug-Inducing
Commits

Our strategy to identify the bug-inducing commits is
adopted by existing works [25] and also those developers
from open source projects (see Section 3.1). Actually, the
detected bug-inducing commits identified by this strategy
can be classified into the three types as mentioned in Section
3.1: 1) the bug-inducing commit is precisely identified and it
is the initial commit of the buggy source file (i.e., denoted as
initial commit); 2) the bug-inducing commit is precisely iden-
tified and it is one of the subsequent commits made to the
buggy source file (i.e., denoted as subsequent commit); or 3) a
set of likely-commits are identified as the approximation of
bug-inducing commits since it is hard to identify the precise
one. Fig. 18 shows the distribution ratios of these three dif-
ferent types of inducing commits for the five subjects. The
majority of the bug-inducing commits identified are the ini-
tial commits, which account for 59.7 percent of the bugs.
26.6 percent of the bug-inducing commits identified are
the subsequent commits. For a small part of bugs (i.e.,
13.7 percent), HSFL can only identify a set of likely-inducing
commits. For project Time, the ratio of likely-inducing com-
mits is extremely higher than the other projects. It is because
that most of Time’s test cases require extra classes (e.g.,
DateTime) to create time objects for testing. Those tests can
not be successfully run on old versions since the required
extra classes have not been checked in to the system. In this
case, we cannot precisely identify the bug-inducing commit
and thus use likely-inducing commits instead.

We further examined those bugs whose bug-inducing
commits are identified as Type 1 or Type 2, we found that
95.8 percent of those bugs’ root causes (i.e., fixing statements)
have overlapwith the statementsmodified by the bug-induc-
ing commits identified by this strategy. This demonstrates
that the precision of such strategy is high. Such strategy
might not be able to retrieve all the bug-inducing commits
for a bug if there are multiple since the bug-revealing tests
might not be complete. However, HSFL’s goal is not to
retrieve all of them. As long as the identified bug-inducing
commits are precise, HSFL is able to improve the perfor-
mance of fault localization. The improvements shown in our
evaluation confirmed this point.

6.2 Effects of Different Kinds of
Bug-Inducing Commits

Different types of bug-inducing commits will affect the per-
formance of HSFL. Fig. 19 shows HSFL’s performance based

Fig. 17. Integrating with learning to rank technique. ‘with’ denotes the
results obtained with HSFL as a feature while ‘without’ represents the
results without considering HSFL.

Fig. 18. Ratios of different types of inducing commits.

2362 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

on different types of the identified bug-inducing commits.
For subsequent commits, HSFL achieves the optimum per-
formance with an average of MAP of 0.316 and MRR of
0.377. Compared with SBFL, it achieves the improvements
of 88.8 and 117.4 percent for MAP and MRR respectively.
For the type of initial commits, HSFL is able to achieve an
average improvements of 11.5 percent and 21.0 percent for
MAP and MRR respectively. However, there are no signifi-
cant improvements for the type of likely inducing commits.
Such differences are caused by the different sizes (i.e., modi-
fied number of statements) of the bug-inducing commits.
Histrum is built on those modified statements of the bug-
inducing commits. Therefore, the larger size of the bug-
inducing commit, the more noises (i.e., those non-buggy
statements irrelevant to the bug) it contains, and thus more
difficult for HSFL to eliminate the noises and distill the root
causes. Fig. 20 shows the sizes of these three types of bug-
inducing commits in terms of the number of modified state-
ments. The median number of modified statements is 102
for subsequent commits of the five subjects, and the number
for initial commits is 1,575. This number is even larger for
likely-inducing commits, which is around 105. As a result,
HSFL performs the best for subsequent commits and worst
for likely-inducing commits. Note that, If the identified bug-
inducing commits are a set of likely-inducing commits, we
aggregate all the modified statements over all these likely-
inducing commits. It is common that the likely-inducing
commits include the initial commit of the code base with
lots of source files checked in to the project. Therefore, it is
not surprising that the likely-inducing commits contain the
largest number of modified statements.

Actually, delta-debugging [68] can be leveraged to help us
identify the minimum set of changes that cause the bug in
those large initial commits. However, it is extremely time-
consuming. We leave the exploration of leveraging delta-
debugging in HSFL as our future work.

These results indicate that HSFL is suggested to be applied
to locate buggy statements for regression bugs whose bug-
inducing commits can be precisely identified as “subsequent“
commits. However, it is not suggested to be applied when
only a range of likely-inducing commits can be identified.

6.3 Effects of Multiple Faults

Large real-world programs, such as those subjects in the
Defects4J dataset, always contain multiple faults at the same
time, some of which might influence with each other.
Although it is often the case, a recent study [11] indicate that
there is no need to correct for this when performing fault
localization, as long as the failing tests only reveal one defect
at a time. Despite that, we are still curious about whether the
performance of HSFL will be affected, when multiple faults
coexist in the same program. Therefore, in this section, we
investigate the effects ofmultiple faults.

We have extended the subject programs in the Defects4J
dataset to extract programs with multiple faults following
the practice of an existing study [35]. Be noted that we only
investigate the effects of two faults at the same time in this
study, and the investigation on a larger cardinality of faults
is left as our future work. Actually, different faulty pro-
grams in Defects4J of a same project are different versions
of the project. Therefore, to create a subject with two faults,
we check whether any of two faults in the Defects4J dataset
coexist in the same version of a same project (both of the
faults have been introduced but have not been fixed). If so,
we include it in our experimental subject. For instance, in
the version before commit #a92450e of project Time, both
bug Time-19 and Time-20 coexist in the system. This process
was conducted manually. In total, we extracted 309 versions
that contain two observable distinct faults. To evaluate the
performance of HSFL under such scenarios, we combined
the bug-revealing tests of both of these two bugs (suppose
we cannot distinguish between the bug-revealing tests of
these bugs). Then, we run our tool HSFL to see how well
can it rank all the buggy statements. Finally, we compare
the performance of HSFL under such scenarios with that
obtained via running HSFL for each of the bug individually,
in terms of MAP and MRR.

Fig. 21 shows the results of the extracted 309 versions.
When locating a single fault at a time, HSFL achieves an
average MAP of 0.244 and MRR of 0.281. When locating
multiple faults (two faults in our experiment) at a time,
HSFL achieves an average MAP of 0.239 and MRR of 0.268.
On average, the MAP has been decreased by 1.19 percent
and that value is 4.40 percent for MRR when working on a
scenario containing multiple faults. However, no significant
differences have been observed (p-value � 0:05) for the per-
formance of HSFL under these two experimental settings as

Fig. 20. The sizes of different inducing commits. The size is measured by
the number of modified statements.

Fig. 19. Performance of HSFL evaluated on different types of inducing
commits. The green bar denotes HSFL and the white bar denotes
SBFL.

Fig. 21. The performance of HSFL in terms of MAP and MRR in the
presence of multiple faults.

WEN ET AL.: HISTORICAL SPECTRUM BASED FAULT LOCALIZATION 2363

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

shown in Fig. 21. Such results indicate that our proposed
technique is able to handle multiple faults effectively and it
does not lead to significant deterioration in its performance.

6.4 Overhead of HSFL

Table 8 shows the overheads of HSFL in processing a bug. In
the table, each column represents different subjects while
each row represents the different steps in HSFL. Specifically,
step 1 refers to identifying bug-inducing commits; step 2
refers to constructing historical spectrum and step 3 refers to
ranking suspicious elements. On average, it takes HSFL less
than three minutes in total to obtain the final rankings of all
the suspicious statements. This indicates that HSFL is practi-
cal in locating faults for real-world projects. The major over-
head comes from the first step to identify bug-inducing
commits. Recompiling the project’s previous versions and
rerunning the bug-revealing tests on those versions contrib-
ute to overall costs of this step. Therefore, the size of the proj-
ect (i.e., number of source files) and the number of historical
commits (since we need to search among the whole history
using binary search) affect the time cost of this step signifi-
cantly. The five projects from the DEFECTS4J benchmark are
not large in their scales. A version of these projects can be
compiled successfully in around 10 seconds. Therefore, the
overhead of HSFL is not high for these projects. It will take
HSFL longer time to identify the bug-inducing commits for
projects with larger sizes. However, identifying bug-induc-
ing commits is a common procedure for debugging in prac-
tice as confirmed by our observations in Section 2. Therefore,
bug-inducing commits can be directly leveraged by HSFL
once it has been identified by developers. Actually, similar to
static analysis, which usually takes quite a long time, a natu-
ral fit of our approach to the development cycles is the
nightly build cycle [69], [70]. A typical nightly build and test
cycle takes 5-10 hours. Therefore, it is applicable to deploy
our approach.

6.5 Threats to Validity

One potential threat to validity is the generality of the proj-
ects used in our evaluation, which means that our experi-
mental results may not be generalized to other dataset.
Specifically, the distributions of different types of bug-
inducing commits for different projects might be divergent
as shown in Fig. 18, and this will affect the final performance
of HSFL. However, real-world open-source projects with dif-
ferent characteristics used in our evaluation, provided by
benchmark DEFECTS4J, may at least partially mitigate the risk
of over-generalization. Besides, for those projects with differ-
ent distributions of inducing commits (e.g., likely-inducing

commits ranging from 0.0 to 51.9 percent), HSFL can achieve
significantly better results compared with SBFL on average
for all of them (as shown in Sections 5.1 and 6.2). This reflects
the generality of HSFL in improving the effectiveness of
existing FL techniques. Evaluating HSFL on more subjects
(e.g., projects from industry) and other languages is left for
our futurework.

Another threat is that our survey presented in Section 2.1
was only conducted at Microsoft, the findings of which
might not be generalized to other companies or the open
source communities. However, the empirical survey is not
themajor contribution of this study. The results of the empir-
ical survey demonstrated the usefulness of version histories,
especially the bug-inducing commits, in debugging activi-
ties. This inspired us to leverage the version history in fault
localization. Such findings have also been echoed by the
observations from the open source communities as discus-
sion in Section 2.1. Specifically, developers from the open
source community also often look for the information of
bug-inducing commits when debugging. Such observations
reflect the generality of our empirical survey conducted at
Microsoft.

7 RELATED WORK

7.1 Automated Fault Localization

Various automated fault localization techniques have been
proposed [2], such as spectrum-based techniques (e.g., [12],
[14], [15], [71]), mutation-based techniques (e.g., [3], [57],
[72]), slice-based techniques (e.g., [73], [74]), machine-learn-
ing based techniques (e.g., [75]), program-state based techni-
ques (e.g., [60]), data-augmented (e.g., [76]), feedback-based
(e.g., [77]), and qualitative reasoning-based techniques (e.g.,
[78]) , which are the most related techniques with our pro-
posed technique. Spectrum-based techniques leverage the
test coverage information obtained via executing the associ-
ated test suite to rank suspicious code elements. Substantial
existing SBFL techniques focus on refining fault locating for-
mulae to improve their effectiveness [30], [32], [33], [34], [35].
Mutation-based techniques (e.g., [3], [57], [72]) utilize the test
results obtained via mutating the program to improve the
effectiveness of fault localization. Slice-based techniques
(e.g., [73], [74]) leverage static or dynamic program depen-
dencies to rank suspicious code elements. Machine-learning
based techniques combine different FL techniques with
machine learning techniques (e.g., [75]). Data-augmented
techniques utilize defect prediction, which is built based on
version histories, to point out those code elements that are
more likely to be buggy in fault localization [76]. Feedback-
based approach is able to leverage past diagnosis experience
with the aim to improve fault localization performance [77].
Qualitative reasoning-based techniques leverage qualitative
reasoning to augment the spectrum information obtained in
SBFL to boost the final performance [78]. Specifically, it qual-
itatively partitions system components, and treats each qual-
itative state as a new spectrum component to be used in
locating faults [78]. We have compared HSFL with most of
the above-mentioned techniques as presented in Section 5.5.
Data-augmented technique, feedback-based techniques and
qualitative reasoning-based technique are not included in
our evaluation in Section 5.5, since they are not applicable to

TABLE 8
HSFL Overheads in Seconds

Lang Math Chart Time Closure Average

Step 1 45.46 76.56 39.23 157.96 147.84 93.41
Step 2 3.57 31.91 4.53 32.20 182.80 51.00
Step 3 0.01 0.01 0.01 0.01 0.01 0.01

Step 1 refers to identifying bug-inducing commits;
Step 2 refers to constructing the historical spectrum
Step 3 refers to ranking suspicious elements.

2364 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

our experimental setting, which targets at locating bugs
automatically at the fine granularity of the statement level.
Data-augmented techniques work at the source file level
[76]. This is because, those features, which are extracted (e.g.,
number of public methods, number of other classes refer-
enced) to augment the spectrum information, are not appli-
cable to measure a single statement in our setting. The
feedback-back technique needs to select modeling variables,
which is an essential step in the their approach but requires
to be done manually [76]. Besides, the authors evaluated the
feedback-based technique on artificial faults (i.e., synthe-
sized or manually injected) [76], while our evaluations were
performed on real faults extracted from real large-scale proj-
ects. Qualitative reasoning-based technique works at the
method level [78], and it leverages the parameter and return
values of a method to partition spectrum components.
Unfortunately, such an approach (i.e., leveraging parameters
and return values) cannot be applied to components such as
statements. Although these approaches cannot be directly
applied to compare with HSFL, we can still incorporate the
insights of these approaches to advance the performance of
HSFL. Therefore, we left it as our important futurework.

There are also other work focused on preprocessing test
cases to improve the effectiveness of SBFL [12], [21], [79], [80],
[81], [82]. For instance, Xuan et al. [79] proposed test case puri-
fication to reduce failing test cases for better performance. It
first produced a set of single-assertion failing test cases, and
then removed the irrelevant statements through dynamic slic-
ing in them. Finally, it applied traditional SBFL to rank suspi-
cious statements. Other researches are proposed with the aim
to improve the performance of fault localization in terms of
other aspects. For instance, Zhang et al. proposed to differenti-
ate the contributions of different test cases using the PageRank
algorithm [12], which is used to recompute the spectrum
information to improving the effectiveness of SBFL. Further-
more, other works integrated more information to SBFL
besides test coverage to improve its effectiveness [13], [80],
[83], [84], [85], [86], [87], [88]. Sohn and Yoo [13] introduced
code and change metrics (e.g., size and age) that have been
widely-used in defect prediction to SBFL to improve its effec-
tiveness. More specifically, based on the suspiciousness val-
ues from traditional SBFL and these source-code metrics, they
utilized learning-to-rank techniques to rank suspicious source
methods. Lucia et al. also proposed Fusion Localizer, which
leverage the diversity of existing different SBFL techniques to
better localize bugs using data fusion techniques [71]. How-
ever, all these techniques focused on the target buggy version
to improve FL effectiveness (i.e., building coverage based
spectrum on this single version). Different from them,
HSFL is the first one to leverage the information of version his-
tories for better fault localization. In particular, HSFL builds
spectrum along the version histories, which is orthogonal to
the traditional execution-based spectrum on the buggy
version. Our experimental results demonstrated that the
Histrum and the coverage based spectrum complement well
to each other.

7.2 Mining Version Histories

Identifying Bug-Inducing Commits. SZZ-algorithm [89], [90]
identifies bug-inducing commits by blaming the changed
lines in the bug-fixing commits. Essentially, it assumes that

the lines changed the bug-fixing commits contain the fault
statements, and leverages git blame to identify which com-
mits changed these lines previously. However, the SZZ
algorithm is not applicable in our application scenario since
it assumes the information of bug-fixing commits (i.e., the
buggy statements) is available. On the contrary, the goal of
our approach HSFL is to identify those buggy statements. If
the bug-fixing commits are available, in which case, the
buggy locations of the bug are known, then there is no need
to launch our approach for fault localization. As a result, we
resort to software testing to identify the bug-inducing com-
mits. Besides, it has been reported that the bug-inducing
commits identified by SZZ is not precise recently [25], [91],
[92]. Specifically, it is reported that the SZZ algorithm can
only achieve an average recall of 68.7 percent. LOCUS is later
proposed to identify the bug-inducing commits based on
bug-reports using information retrieval techniques [23].
ChangeLocator identifies bug-inducing commits based a
bucket of crash reports [24]. These techniques work in the
case where the bug-revealing tests are not available or the
efforts of running test suite is extremely high. Delta debug-
ging is another related work that aims at identifying the
minimum set of changes inducing a failure [68]. HSFL iden-
tifies bug-inducing commits precisely via running the bug-
revealing tests on the complete version history using binary
search. This strategy is also adopted by a recent work to
identify regression bugs [25].

Tracing Source Code Evolution. Understanding the evolu-
tion of source code is important for developers. Girba et al.
proposed a meta-model to represent the history of code
entities at different levels of granularity (e.g., class, method)
[93]. Zimmermann et al. proposed annotation graph to iden-
tify line changes across several versions. However, code dif-
ferences between two versions are maintained by version
control systems at the granularity of hunks (i.e., a block of
code elements) instead of lines. Therefore, precisely tracking
the mappings at the granularity of statement level is chal-
lenging. History slicing techniques are proposed to tackle
this issue [29], [94], [95]. Specifically, it approaches the line
mapping problem as the problem of finding the minimum
matching of a weighted bipartite graph, and then leverages
the Kuhn-Munkres algorithm [46] to find the optimum
matching. The historical evolution of source code has also
been leveraged to enhance the performance of automated
program repair techniques [96]. HSFL leverages history slic-
ing to construct the historical spectrum based on the identi-
fied bug-inducing commits. To the best of our knowledge,
historical spectrum is novel to FL. It is another dimension
information of spectrum, which complements well to differ-
ent families of fault localization techniques.

8 CONCLUSION

We present a novel FL technique, HSFL, in this paper, which
leverages the information of version histories in fault locali-
zation. The key novelty of HSFL, which allows it to locate
more bugs compared with SBFL, is the historical spectrum
(i.e., Histrum). Histrum is constructed by tracing the evolu-
tion of bug-inducing commits along version histories and is
another dimension of spectrum orthogonal to the conven-
tional coverage based spectrum used in SBFL. It reflects the

WEN ET AL.: HISTORICAL SPECTRUM BASED FAULT LOCALIZATION 2365

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

root causes of bugs directly and breaks the tie issues of con-
ventional SBFL significantly.We evaluateHSFL on the bench-
mark DEFECTS4J, and the results show that HSFL outperforms
SBFL significantly. Specifically, it locates and ranks the buggy
statement at Top-1 for 77.8 percent more bugs comparedwith
SBFL, and 33.9 percent more bugs for Top-5. Besides SBFL,
our evaluation results also show that our proposed approach
can outperform and boost the performance of other six fami-
lies of FL techniques. In the future, we plan to design better
techniques specific for our proposed novel model, Histrum,
to further improve the effectiveness ofHSFL.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their constructive com-
ments. This work is supported by the Hong Kong RGC/
GRF Grant 16202917, the MSRA Collaborative Research
Fund, the Hong Kong PhD Fellowship Scheme and the
National Natural Science Foundation of China under Grant
No. 61902329.

REFERENCES

[1] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen,
“Reversible debugging software,” Tech. Rep. Judge Bus. School,
Univ. Cambridge, Cambridge, U.K., Jan. 2013.

[2] W. E. Wong and V. Debroy, “A survey of software fault local-
ization,” University of Texas at Dallas, Richardson, TX, Tech. Rep.
UTDCS-45, 2009.

[3] S. Hong et al., “Mutation-based fault localization for real-world
multilingual programs (T),” in Proc. 30th IEEE/ACM Int. Conf.
Autom. Softw. Eng., 2015, pp. 464–475.

[4] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Directed test generation
for effective fault localization,” in Proc. 19th Int. Symp. Softw. Testing
Anal., 2010, pp. 49–60.

[5] X. Xia, L. Bao, D. Lo, and S. Li, ““Automated debugging consid-
ered harmful” Considered harmful: A user study revisiting the
usefulness of spectra-based fault localization techniques with pro-
fessionals using real bugs from large systems,” in Proc. IEEE Int.
Conf. Softw. Maintenance Evol., 2016, pp. 267–278.

[6] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations
on automated fault localization,” in Proc. 25th Int. Symp. Softw.
Testing Anal., 2016, pp. 165–176.

[7] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-
aware patch generation for better automated program repair,” in
Proc. 40th Int. Conf. Softw. Eng., 2018, pp. 1–11.

[8] C. Le Goues, S. Forrest, and W. Weimer, “Current challenges in
automatic software repair,” Softw. Qual. J., vol. 21, no. 3, pp. 421–443,
2013.

[9] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A
systematic study of automated program repair: Fixing 55 out
of 105 bugs for 8 each,” in Proc. 34th Int. Conf. Softw. Eng., 2012,
pp. 3–13.

[10] Y. Qi, X. Mao, Y. Lei, and C. Wang, “Using automated program
repair for evaluating the effectiveness of fault localization
techniques,” inProc. Int. Symp. Softw. Testing Anal., 2013, pp. 191–201.

[11] S. Pearson et al., “Evaluating and improving fault localization,” in
Proc. 39th Int. Conf. Softw. Eng., 2017, pp. 609–620.

[12] M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-
based fault localization using PageRank,” in Proc. 26th ACM SIG-
SOFT Int. Symp. Softw. Testing Anal., 2017, pp. 261–272.

[13] J. Sohn and S. Yoo, “FLUCCS: Using code and change metrics to
improve fault localization,” in Proc. 26th ACM SIGSOFT Int. Symp.
Softw. Testing Anal., 2017, pp. 273–283.

[14] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proc. Testing: Academic
Ind. Conf. Practice Res. Techn.-MUTATION, 2007, pp. 89–98.

[15] J. Campos, A. Riboira, A. Perez, and R. Abreu, “GZoltar: An
eclipse plug-in for testing and debugging,” in Proc. 27th IEEE/
ACM Int. Conf. Autom. Softw. Eng., 2012, pp. 378–381.

[16] X. Xie, F.-C. Kuo, T. Y. Chen, S. Yoo, and M. Harman, “Provably
optimal and human-competitive results in SBSE for spectrum
based fault localisation,” in Proc. Int. Symp. Search Based Softw.
Eng., 2013, pp. 224–238.

[17] A. Riboira, R. Abreu, and R. Rodrigues, “An OpenGL-based
eclipse plug-in for visual debugging,” in Proc. 1st Workshop Devel-
oping Tools Plug-Ins, 2011, pp. 60–60.

[18] A. Riboira, R. Rodrigues, R. Abreu, and J. Campos, “Integrating
interactive visualizations of automatic debugging techniques on
an integrated development environment,” Int. J. Creative Interfaces
Comput. Graphics, vol. 3, no. 2, pp. 42–59, 2012.

[19] L. Inozemtseva and R. Holmes, “Coverage is not strongly corre-
lated with test suite effectiveness,” in Proc. 36th Int. Conf. Softw.
Eng., 2014, pp. 435–445.

[20] J. Chen, Y. Bai, D. Hao, L. Zhang, L. Zhang, and B. Xie, “How do
assertions impact coverage-based test-suite reduction?” in Proc.
IEEE Int. Conf. Softw. Testing VerificationValidation, 2017, pp. 418–423.

[21] Y. Yu, J. A. Jones, and M. J. Harrold, “An empirical study of the
effects of test-suite reduction on fault localization,” in Proc. 30th
Int. Conf. Softw. Eng., 2008, pp. 201–210.

[22] X. Xu, V. Debroy, W. Eric Wong, and D. Guo, “Ties within fault
localization rankings: Exposing and addressing the problem,” Int.
J. Softw. Eng. Knowl. Eng., vol. 21, no. 06, pp. 803–827, 2011.

[23] M. Wen, R. Wu, and S.-C. Cheung, “Locus: Locating bugs from
software changes,” in Proc. 31st IEEE/ACM Int. Conf. Automated
Softw. Eng., 2016, pp. 262–273.

[24] R. Wu, M. Wen, S.-C. Cheung, and H. Zhang, “ChangeLocator:
Locate crash-inducing changes based on crash reports,” Empir.
Softw. Eng., vol. 23, pp. 2866–2900, Oct. 2018.

[25] M. B€ohme and A. Roychoudhury, “CoREBench: Studying com-
plexity of regression errors,” in Proc. Int. Symp. Softw. Testing
Anal., 2014, pp. 105–115.

[26] Gcc-79286, 2018. [Online]. Available: https://gcc.gnu.org/
bugzilla/show_bug.cgi?id=79286, Accessed on: Jan. 12, 2018.

[27] Solr-2606, 2018. [Online]. Available: https://issues.apache.org/
jira/browse/SOLR-2606, Accessed on: Jan. 12, 2018.

[28] K. Herzig and A. Zeller, “The impact of tangled code changes,” in
Proc. 10th IEEEWork. Conf.Mining Softw. Repositories, 2013, pp. 121–130.

[29] F. Servant and J. A. Jones, “History slicing: Assisting code-evolution
tasks,” in Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw. Eng.,
2012, Art. no. 43.

[30] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. Van Gemund, “A
practical evaluation of spectrum-based fault localization,” J. Syst.
Softw., vol. 82, no. 11, pp. 1780–1792, 2009.

[31] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of exist-
ing faults to enable controlled testing studies for Java programs,”
in Proc. Int. Symp. Softw. Testing Anal., 2014, pp. 437–440.

[32] J. A. Jones and M. J. Harrold, “Empirical evaluation of the taran-
tula automatic fault-localization technique,” in Proc. 20th IEEE/
ACM Int. Conf. Automated Softw. Eng., 2005, pp. 273–282.

[33] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The DStar method for
effective software fault localization,” IEEE Trans. Rel., vol. 63, no. 1,
pp. 290–308,Mar. 2014.

[34] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Trans. Softw. Eng. Methodol., vol.
20, no. 3, 2011, Art. no. 11.

[35] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “Spectrum-based
multiple fault localization,” in Proc. IEEE/ACM Int. Conf. Auto-
mated Softw. Eng., 2009, pp. 88–99.

[36] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: An exploratory study in
industry,” in Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw.
Eng., 2012, Art. no. 51.

[37] A. Schroter, A. Schr€oter, N. Bettenburg, and R. Premraj, “Do stack
traces help developers fix bugs?” in Proc. 7th IEEE Work. Conf.
Mining Softw. Repositories, 2010, pp. 118–121.

[38] N. Bettenburg, S. Just, A. Schr€oter, C. Weiss, R. Premraj, and
T. Zimmermann, “What makes a good bug report?” in Proc. 16th
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2008, pp. 308–318.

[39] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information
needs in bug reports: Improving cooperation between developers
and users,” in Proc. ACM Conf. Comput. Supported Cooperative
Work, 2010, pp. 301–310.

[40] M. B€ohme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe, and
A. Zeller, “Where is the bug and how is it fixed? An experiment
with practitioners,” in Proc. 11th Joint Meeting Found. Softw. Eng.,
2017, pp. 117–128.

2366 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79286
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79286
https://issues.apache.org/jira/browse/SOLR-2606
https://issues.apache.org/jira/browse/SOLR-2606

[41] Solr-2606, 2018. [Online]. Available: https://issues.apache.org/
jira/browse/SOLR-8026, Accessed on: Jan. 12, 2018.

[42] A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and
B. Spates, “When a patch goes bad: Exploring the properties of
vulnerability-contributing commits,” in Proc. ACM/IEEE Int.
Symp. Empir. Softw. Eng. Meas., 2013, pp. 65–74.

[43] C. Couder, “Fighting regressions with git bisect,” The Linux Kernel
Archives, GIT Repository, Version 4.5, 2008.

[44] J.-R. Falleri, F. Morandat, X. Blanc, M.Martinez, andM. Monperrus,
“Fine-grained and accurate source code differencing,” in Proc. 29th
ACM/IEEE Int. Conf. Autom. Softw. Eng., 2014, pp. 313–324.

[45] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet Phys. Doklady, vol. 10, no. 8,
pp. 707–710, 1966.

[46] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval Res. Logistics, vol. 2, no. 1/2, pp. 83–97, 1955.

[47] M. Martinez and M. Monperrus, “ASTOR: A program repair
library for Java,” in Proc. 25th Int. Symp. Softw. Testing Anal., 2016,
pp. 441–444.

[48] J. Xuan et al., “Nopol: Automatic repair of conditional statement
bugs in Java programs,” IEEE Trans. Softw. Eng., vol. 43, no. 1,
pp. 34–55, Jan. 2017.

[49] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and
A. Arcuri, “Do automatically generated unit tests find real faults?
An empirical study of effectiveness and challenges (T),” in Proc.
30th IEEE/ACM Int. Conf. Automated Softw. Eng., 2015, pp. 201–211.

[50] E. M. Voorhees, et al., “The TREC-8 question answering track
report,” in Proc. Text Retrieval Conf., 1999, vol. 99, pp. 77–82.

[51] H. Sch€utze, C. D.Manning, and P. Raghavan, Introduction to Informa-
tionRetrieval, vol. 39. Cambridge,U.K.: CambridgeUniv. Press, 2008.

[52] C. D. Manning andH. Sch€utze, Foundations of Statistical Natural Lan-
guage Processing, vol. 999. Cambridge,MA,USA:MIT Press, 1999.

[53] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity
and value of empirical assessments of the accuracy of coverage-
based fault locators,” in Proc. Int. Symp. Softw. Testing Anal., 2013,
pp. 314–324.

[54] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of
test set minimization on fault detection effectiveness,” in Proc.
17th Int. Conf. Softw. Eng., 1995, pp. 41–50.

[55] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Trans. Softw. Eng., to be published, doi: 10.1109/TSE.2019.2892102.

[56] M. Wen, J. Chen, R. Wu, D. Hao, and S. C. Cheung, “An empirical
analysis of the influence of fault space on search-based automated
program repair,” 2017, arXiv:1707.05172.

[57] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in Proc. IEEE 7th Int. Conf.
Softw. Testing Verification Validation, 2014, pp. 153–162.

[58] M. Papadakis and Y. Le Traon, “Metallaxis-FL: Mutation-based
fault localization,” Softw. Testing Verification Rel., vol. 25, no. 5/7,
pp. 605–628, 2015.

[59] H. Pan and E. H. Spafford, “Heuristics for automatic localization
of software faults,” Tech. Rep. SERC-TR-116-P, Purdue Univer-
sity, West Lafayette, IN, USA, Jul. 29, 1992.

[60] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through auto-
mated predicate switching,” in Proc. 28th Int. Conf. Softw. Eng.,
2006, pp. 272–281.

[61] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be
fixed? More accurate information retrieval-based bug localiza-
tion based on bug reports,” in Proc. 34th Int. Conf. Softw. Eng.,
2012, pp. 14–24.

[62] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu,
“Bugcache for inspections:Hit ormiss?” inProc. 19th ACMSIGSOFT
Symp. and the 13th Eur. Conf. Found. Softw. Eng., 2011, pp. 322–331.

[63] J. Xuan and M. Monperrus, “Learning to combine multiple rank-
ing metrics for fault localization,” in Proc. IEEE Int. Conf. Softw.
Maintenance Evolution, 2014, pp. 191–200.

[64] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The Ann.
Math. Statist., vol. 18, pp. 50–60, 1947.

[65] C. Manning, P. Raghavan, and H. Sch€utze, “Introduction to infor-
mation retrieval,” Natural Lang. Eng., vol. 16, no. 1, pp. 100–103,
2010.

[66] X.-B. D. Le, L. Bao, D. Lo, X. Xia, S. Li, and C. Pasareanu, “On reli-
ability of patch correctness assessment,” in Proc. 41st Int. Conf.
Softw. Eng., 2019, pp. 524–535.

[67] T.-M. Kuo, C.-P. Lee, and C.-J. Lin, “Large-scale kernel RankSVM,”
in Proc. SIAM Int. Conf. DataMining, 2014, pp. 812–820.

[68] A. Zeller, “Yesterday, my program worked. today, it does not.
Why?” ACM SIGSOFT Softw. Eng. Notes, vol. 24, no. 6, pp. 253–267,
1999.

[69] N. Ayewah and W. Pugh, “The Google FindBugs fixit,” in Proc.
19th Int. Symp. Softw. Testing Anal., 2010, pp. 241–252.

[70] S. McPeak, C.-H. Gros, and M. K. Ramanathan, “Scalable and
incremental software bug detection,” in Proc. 9th Joint Meeting
Found. Softw. Eng., 2013, pp. 554–564.

[71] D. Lo, X. Xia, et al., “Fusion fault localizers,” in Proc. 29th ACM/
IEEE Int. Conf. Autom. Softw. Eng., 2014, pp. 127–138.

[72] M. Delahaye, L. C. Briand, A. Gotlieb, and M. Petit, “mTIL: Muta-
tion-based statistical test inputs generation for automatic fault
localization,” in Proc. IEEE 6th Int. Conf. Softw. Security Rel., 2012,
pp. 197–206.

[73] H. Agrawal, R. A. DeMillo, and E. H. Spafford, “Debugging with
dynamic slicing and backtracking,” Softw.: Practice Exper., vol. 23,
no. 6, pp. 589–616, 1993.

[74] X. Zhang, H. He, N. Gupta, and R. Gupta, “Experimental evalua-
tion of using dynamic slices for fault location,” in Proc. 6th Int.
Symp. Automated Anal.-Driven Debugging, 2005, pp. 33–42.

[75] L. C. Briand, Y. Labiche, and X. Liu, “Using machine learning to
support debugging with tarantula,” in Proc. 18th IEEE Int. Symp.
Softw. Rel., 2007, pp. 137–146.

[76] A. Elmishali, R. Stern, and M. Kalech, “Data-augmented software
diagnosis,” in Proc. 38th IAAI Conf. Artif. Intell., 2016, pp. 4003–4009.

[77] N. Cardoso and R. Abreu, “A kernel density estimate-based
approach to component goodness modeling,” in Proc. 27th AAAI
Conf. Artif. Intell., 2013, pp. 152–158.

[78] A. Perez, R. Abreu, and I. HASLab, “Leveraging qualitative rea-
soning to improve SFL,” in Proc. 27th Int. Joint Conf. Artif. Intell.,
2018, pp. 1935–1941.

[79] J. Xuan and M. Monperrus, “Test case purification for improving
fault localization,” in Proc. 22nd ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2014, pp. 52–63.

[80] D. Hao, T. Xie, L. Zhang, X. Wang, J. Sun, and H. Mei, “Test input
reduction for result inspection to facilitate fault localization,”
Automated Softw. Eng., vol. 17, no. 1, 2010, Art. no. 5.

[81] S. Yoo, M. Harman, and D. Clark, “Fault localization prioritiza-
tion: Comparing information-theoretic and coverage-based
approaches,” ACM Trans. Softw. Eng. Methodol., vol. 22, no. 3,
2013, Art. no. 19.

[82] B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites for
efficient fault localization,” in Proc. 28th Int. Conf. Softw. Eng.,
2006, pp. 82–91.

[83] E. Alves, M. Gligoric, V. Jagannath, and M. d’Amorim, “Fault-
localization using dynamic slicing and change impact analysis,”
in Proc. 26th IEEE/ACM Int. Conf. Autom. Softw. Eng., 2011,
pp. 520–523.

[84] T.-D. B Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-
rank based fault localization approach using likely invariants,” in
Proc. 25th Int. Symp. Softw. Testing Anal., 2016, pp. 177–188.

[85] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold, “Lightweight
fault-localization using multiple coverage types,” in Proc. 31st Int.
Conf. Softw. Eng., 2009, pp. 56–66.

[86] W. Masri, R. A. Assi, F. Zaraket, and N. Fatairi, “Enhancing fault
localization via multivariate visualization,” in Proc. IEEE 5th Int.
Conf. Softw. Testing Verification Validation, 2012, pp. 737–741.

[87] W. Masri and R. A. Assi, “Prevalence of coincidental correctness
and mitigation of its impact on fault localization,” ACM Trans.
Softw. Eng. Methodol., vol. 23, no. 1, 2014, Art. no. 8.

[88] C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei,
“Boosting bug-report-oriented fault localization with segmenta-
tion and stack-trace analysis,” in Proc. IEEE Int. Conf. Softw. Main-
tenance Evol., 2014, pp. 181–190.

[89] S. Kim et al., “Automatic identification of bug-introducing chan-
ges,” in Proc. 21st IEEE/ACM Int. Conf. Automated Softw. Eng.,
2006, pp. 81–90.

[90] J. �Sliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?”ACMSIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5,
2005.

[91] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and
A. E. Hassan, “A framework for evaluating the results of the SZZ
approach for identifying bug-introducing changes,” IEEE Trans.
Softw. Eng., vol. 43, no. 7, pp. 641–657, Jul. 2017.

WEN ET AL.: HISTORICAL SPECTRUM BASED FAULT LOCALIZATION 2367

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

https://issues.apache.org/jira/browse/SOLR-8026
https://issues.apache.org/jira/browse/SOLR-8026
http://dx.doi.org/10.1109/TSE.2019.2892102

[92] M. Wen et al., “Exploring and exploiting the correlations between
bug-inducing and bug-fixing commits,” inProc. 27th ACM JointMeet-
ing Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2019, pp. 326–337.

[93] T. Gı̂rba and S. Ducasse, “Modeling history to analyze software
evolution,” J. Softw.: Evol. Process, vol. 18, no. 3, pp. 207–236, 2006.

[94] Y. Li, C. Zhu, J. Rubin, and M. Chechik, “Precise semantic history
slicing through dynamic delta refinement,” in Proc. 31st IEEE/
ACM Int. Conf. Automated Softw. Eng., 2016, pp. 495–506.

[95] F. Servant and J. A. Jones, “Fuzzy fine-grained code-history analysis,”
inProc. 39th Int. Conf. Softw. Eng., 2017, pp. 746–757.

[96] X. B. D. Le, D. Lo, and C. Le Goues, “History driven program
repair,” in Proc. IEEE 23rd Int. Conf. Softw. Anal. Evol. Reeng., 2016,
vol. 1, pp. 213–224.

Ming Wen received the PhD degree from the
Department of Computer Science and Engineer-
ing, the Hong Kong University of Science and
Technology (HKUST), in 2019. He is now a faculty
member at the School of Cyber Science and Engi-
neering, Huazhong University of Science and
Technology, Wuhan, China. His research interests
include program analysis, mining software reposi-
tories, fault localization and repair. More informa-
tion about him can be found at: http://home.cse.
ust.hk/~mwenaa/.

Junjie Chen received the PhD detgree from the
Department of Computer Science and Technology,
Peking University, in 2019. He is an associate
professor at the College of Intelligence and Com-
puting, Tianjin University. His research interests
include software testing, debugging, and mainte-
nance,mainly focusing on compiler testing, regres-
sion testing, automated debugging, fuzzing, and
online service systemmaintenance.

Yongqiang Tian received the BEng degree
[Hons.] in information engineering from the City
University of Hong Kong, 2017. He is now work-
ing toward the PhD degree in the Department of
Computer and Science, the Hong Kong Univer-
sity of Science and Technology. He is the
awardee of the Hong Kong PhD fellowship
Scheme and Microsoft Cloud Research Software
Fellow Award 2019. His research interests
include software testing, especially in testing AI
systems.

Rongxin Wu received the PhD degree from
HKUST, in 2017. He is currently an associate
professor at the Department of Cyber Space Secu-
rity, Xiamen University. His research interests
include program analysis, software security, and
mining software repository. His research work has
been regularly published in top conferences and
journals in the research communities of program
languages and software engineering, including
POPL, PLDI, ICSE, FSE, ISSTA, ASE, TSE and
EMSE and so on. He has served as a reviewer in

reputable international journals and a program committee member in
several international conferences. He is a two-time recipient of the ACM
SIGSOFT Distinguished Paper Award. More information about him can be
found at: https://wurongxin1987.github.io/wurongxin.xmu.edu.cn/.

Dan Hao received the BS degree in computer sci-
ence from the Harbin Institute of Technology in
2002 and the PhD degree in computer science
fromPeking University in 2008. She is an associate
professor at the School of Electronics Engineering
and Computer Science, Peking University, China.
Her current research interests include software
testing and debugging. She served on the program
committees of many prestigious conferences, such
ICSE, ICSME, and so on. She was a general co-
chair of SPLC 2018. She is a senior member of the
ACM.

Shi Han received the BE and ME degrees in
computer science from Zhejiang University, in
2003 and 2006, respectively, and joined MSRA,
in 2006. He is a principal research manager with
the DKI (Data, Knowledge, Intelligence) group of
Microsoft Research Asia (MSRA). His research
interests include machine learning applications in
data intelligence and software analytics. Since
then, the technologies from his research work
have been transferred into Microsoft products
including Windows, Office, Power BI, etc. Related

work has been published across multiple areas at ICSE, FSE, ASE, SIG-
MOD, ASPLOS, AAAI, etc. He has been on the Expert Committee on
System Software of China Computer Federation (CCF) since 2014.

Shing-Chi Cheung received the doctoral degree
in computing from the Imperial College London.
He joined the Hong Kong University of Science
and Technology (HKUST) where he is a profes-
sor of computer science and engineering. He
founded the CASTLE research group at HKUST
and co-founded, in 2006 the International Work-
shop on Automation of Software Testing (AST).
He was the general chair of the 22nd ACM SIG-
SOFT International Symposium on the Founda-
tions of Software Engineering (FSE 2014). He

was an editorial board member of the IEEE Transactions on Software
Engineering (TSE, 2006-9). His research interests focus on the quality
enhancement of software for mobile, web, deep learning, open-source
and block-chain applications. He is an ACM distinguished scientist.
More information about his CASTLE research group can be found at
http://sccpu2.cse.ust.hk/castle/people.html.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2368 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:19:07 UTC from IEEE Xplore. Restrictions apply.

http://home.cse.ust.hk/~mwenaa/
http://home.cse.ust.hk/~mwenaa/
https://wurongxin1987.github.io/wurongxin.xmu.edu.cn/
http://sccpu2.cse.ust.hk/castle/people.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

