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ABSTRACT
Satisfiability Modulo Theories (SMT) solvers serve as the core en-
gine of many techniques, such as symbolic execution. Therefore,
ensuring the robustness and correctness of SMT solvers is critical.
While fuzzing is an efficient and effective method for validating the
quality of SMT solvers, we observe that prior fuzzing work only
focused on generating various first-order formulas as the inputs
but neglected the algorithmic configuration space of an SMT solver,
which leads to under-reporting many deeply-hidden bugs. In this
paper, we present Falcon, a fuzzing technique that explores both
the formula space and the configuration space. Combining the two
spaces significantly enlarges the search space and makes it chal-
lenging to detect bugs efficiently. We solve this problem by utilizing
the correlations between the two spaces to reduce the search space,
and introducing an adaptive mutation strategy to boost the search
efficiency. During six months of extensive testing, Falcon finds 518
confirmed bugs in CVC4 and Z3, two state-of-the-art SMT solvers,
469 of which have already been fixed. Compared to two state-of-
the-art fuzzers, Falcon detects 38 and 44 more bugs and improves
the coverage by a large margin in 24 hours of testing.

CCS CONCEPTS
• Software and its engineering→ Software verification and vali-
dation;
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1 INTRODUCTION
Satisfiability Modulo Theories (SMT) solvers decide the satisfiability
of formulas over some first-order theories, such as integers, reals,
bit-vectors, strings, and their combinations [6, 15, 19, 22, 25, 30, 50].
Over the past two decades, SMT solvers have played critical roles
in solving software engineering problems [9, 11, 17, 29, 31], such
as finding zero-day software vulnerabilities via symbolic execu-
tion [3, 32], verifying the safety of radiotherapy machines [55],
and enforcing the access control policies of Amazon Web Ser-
vices [13, 21]. For example, to guarantee the security of a customer-
facing service, it is reported that Amazon makes tens of millions of
calls to SMT solvers per day [21].

Despite the tremendous research progress in SMT solving, many
industrial-strength SMT solvers are still error-prone [16, 46, 66, 67].
For instance, in the last two years, thousands of issues have been
reported, including crashes, correctness bugs, and others, for Z3 [22]
and CVC4 [6], the two most prominent SMT solvers. Crash issues
may lead to Denial-of-Service vulnerabilities, and correctness issues
may lead to the escape of serious zero-day vulnerabilities from the
inspection of code analyzers.

To ensure the quality of SMT solvers without diving into the
details of their sophisticated internal logic, previous work has em-
ployed grammar-based black-box fuzzing to randomly generate
syntactically valid SMT formulas [12, 14, 66]. BanditFuzz [60] ex-
tends this line of research by combining reinforcement learning for
grammar-aware mutations. More recently, several techniques have
emerged for detecting correctness bugs in SMT solvers [16, 46, 67].
These techniques generate formulas whose satisfiability is known
by construction, and use such ground truth as the test oracle.

However, the above solutions still have many limitations. Specif-
ically, in addition to the formula space that consists of first-order
formulas, a critical space, referred to as the algorithmic configuration
space, has been less-explored, which leads to under-reporting many
deeply-hidden bugs in an SMT solver. The configuration space
is critical because it determines the functionalities used by the
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Figure 1: Overview of Falcon workflow.

SMT solver among its complex and enormous algorithmic compo-
nents [23]. If the configuration space is not taken into consideration,
a fuzzer for testing SMT solvers has at least two weaknesses. First,
the results of code coverage suffer, because many algorithmic com-
ponents and their combinations may not be tested at all. Second,
the fuzzer will miss bugs, as many bugs can only be discovered by
using some specific formulas together with some specific solver
configurations.

Unfortunately, extending existing fuzzers to explore both the
formula space and the algorithmic configuration space would be
stunningly challenging. Consider that the formula space has already
been untraceable because of the semantic richness of the first-order
formulas. The configuration space additionally creates a large space
orthogonal to the formula space. For example, Z3 exposes more
than 500 solver options, which result in millions of configurations
by combining these options in different manners. Consequently,
the space enlargement dramatically increases the search efforts,
which can result in a sharp reduction in fuzzing efficiency.

Our idea to mitigate this space explosion issue is based on the ob-
servation that, many of the solver options (the configuration space)
are often correlated with the operations in an SMT formula (the for-
mula space). For example, the solver option str.regex_automata
of Z3 only works for string formulas with regex expression opera-
tions and, thus, has no effects on integer or real formulas. While
an SMT solver’s configuration space is innately huge, the search
space for the individual formula can be significantly reduced, if the
correlation between the formula space and the configuration space
can be automatically identified.

Based on the observation, we present Falcon, a feedback-driven
fuzzing technique, which explores both the formula and the con-
figuration space of an SMT solver. At a high level, Falcon works in
two phases, as shown in Figure 1.
• The learning phase infers the correlations between opera-
tions in SMT formulas and the options of SMT solvers. Such
information can be preserved to identify the relevant solver
options for unseen formulas.
• The fuzzing phase utilizes a grammar-based generative fuzzer
to sample diverse SMT formulas. Further, for each generated

formula, Falcon explores the configuration space by adap-
tively mutating the solver options. Specifically, we utilize
the pre-inferred correlation information to identify the rele-
vant options, and design a feedback-driven mechanism for
mutating the options.

During the six months of extensive testing, Falcon detects 105
and 413 confirmed bugs in CVC4 and Z3, respectively. These re-
ported bugs cover correctness bugs, crash bugs, and performance
bugs, demonstrating the promising capability of bug detection.
By the time of writing, 469 of the bugs had been fixed, and our
bug-revealing test cases had been added to the official regression
test suites of the solvers. To understand the differences with other
fuzzers, we also compare our approach to state-of-the-art tools,
namely Storm [46] and OpFuzz [66]. In 24 hours of testing, Falcon
detects 38 and 44 more bugs respectively, and, on average, improves
the line coverage by 24.0% and 17.2% respectively. Besides, we apply
Falcon to enhance Storm and OpFuzz by better exploring the con-
figuration space, and demonstrate that Falcon can improve the code
coverage and bug finding capability of the two fuzzers significantly.

In summary, we make the following contributions:
• We design and implement Falcon, a fuzzing framework that
effectively explores the combined formula-configuration
search space for fuzzing SMT solvers.
• We propose a method for learning the correlations between
the formula space and the configuration space, and present a
feedback-driven mechanism that significantly improves the
fuzzing efficiency.
• We conduct a comprehensive evaluation, which demonstrates
Falcon’s capability of bug detection for different SMT solvers,
and shows its outperformance over other existing fuzzers.

2 PRELIMINARIES
In this section, we present the basic notations and terminologies
throughout the paper.

2.1 Satisfiability Modulo Theories
Satisfiability Modulo Theories (SMT) is the problem of deciding the
satisfiability of a first-order formula over some first-order theories.
Examples include the theories of integer and real arithmetics, unin-
terpreted functions, bit-vectors, arrays, strings, and many more. In
this paper, we assume the use of the SMT-LIB2 language [7], a stan-
dard for SMT formulas, which formally specifies the input format
for theories that attract enough interest in the research community.

Example 2.1. Figure 2 shows a formula specified in the SMT-
LIB2 language. The first line declares the logic type of the formula
(QF_LIA), which stands for quantifier-free linear integer arithmetic.
The next two lines declare the variables, following which each
line starting with “assert” is a constraint. Multiple asserts can be
viewed as the conjunction of the constraints in each individual
assert statement. The command “check-sat” instructs the solver to
decide the satisfiability of the constraints. Finally, the command
“get-unsat-core” requests for an unsat core, which is a subset of
constraints that introduce unsatisfiability. 1

1For example, the unsat core of the formula in Figure 2 is {x > 6, x < 4}. Usually,
SMT solvers do not search for the unsat core by default.
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1 ( se t− log i c QF_LIA )
2 ( declare−const x I n t )
3 ( declare−const y I n t )
4 ( as se r t ( > x 6 ) )
5 ( as se r t ( = y 3 ) )
6 ( as se r t ( < x 4 ) )
7 ( check−sat )
8 ( get−unsat−core )

Figure 2: An integer formula in the SMT-LIB2 language.

Table 1: A selected list of options in Z3. Each option has a
default value, as well as two or more values to choose from.

Option Type Values Default

rewriter.elim_and Bool {false, true} false
smt.string_solver String {“seq”, “z3str3”} “seq”
smt.arith.solver Int {1, 2, . . . , 6} 6
sat.restart_factor Double [−∞, +∞] 1.5

In the remainder of the paper, we term the collection of all func-
tion symbols (e.g., integer addition), predicate symbols (e.g., <,=, >),
Boolean connectives, and the set of commands { “get-model”, “get-
unsat-core”, “get-unsat-assumptions”, “get-proof”, “push”, “pop” }
as the operations of an SMT formula.

2.2 Configuration Space of SMT Solvers
Modern SMT solvers are complex software systems with various
algorithmic components, which either simplify a formula into a
suitable representation or apply decision procedures to check for
satisfiability. Simplifications like constant folding (e.g., x + 0→ x )
and bit-blasting [35] can put the problem in a form that is eas-
ier or suitable for solving. Decision procedures such as Simplex
method [26] and CDCL algorithm [62] can solve linear arithmetic
constraints and Boolean constraints, respectively.

SMT solvers often expose a collection of options to control
certain behavioral aspects of their algorithmic components. The
configuration of the solver is a subset of the options that are respon-
sible for a user’s preferences. It is often the case that an algorithmic
component only gets executed when some options are set to specific
values. For example, Table 1 lists a sampled list of options in the
Z3 SMT solver. Consider the option smt.string_solver, which
stands for the engine of string constraint solving. Z3 has two en-
gines, namely seq [10] and z3str3 [8], which can be complementary
in handling formulas of different characteristics.

As the use of SMT solvers continues to grow and diversify, the
number of solver options has steadily risen in most solvers. For
instance, the latest versions of Z3 and CVC4 expose 574 and 457
options, respectively. Thus, the configuration space of an SMT
solver can be enormous. Note that, many of these options have
been requested by end-users, who “have a wide-spread wish for more
methods to exert strategic control over the solver’s reasoning” [23].

2.3 Grammar-based Generative Fuzzing
Grammar-based generative fuzzers take a grammar as their input
and generate test cases based on the grammar.

θ (r ) Meaning
S → arg | " " 0.006 string variables, literals

| (str.replace S S S ) 0.012 string replacement
| (str.++ S S ) 0.231 string concatenation
| . . . . . . . . .

Figure 3: A simple PCFG for string expressions, where each
production rule r has a probability θ (r ).

Definition 2.1. A context-free grammar (CFG) is a quadruple
G = (N , Σ, P , S ), where N is a set of non-terminals, Σ is a set of
terminals, P ⊆ N × (N ∪ Σ)∗ is a finite set of production rules, and
S ∈ N is the start symbol.

Suppose that we are given a language and its context-free gram-
mar. To generate programs of the language, it is natural to walk over
the grammar’s productions, which typically starts from a unique
start symbol and proceeds by applying left-right production rules
from the grammar [34, 47, 58, 63].

Definition 2.2. A probabilistic context-free grammar (PCFG) is
defined as a pair (G,θ ), where G is a context-free grammar, and
θ : P 7→ R+ is a function, such thatθ (r ) is the production probability
associated with a production rule r ∈ P .

Intuitively, the probabilities determine the relative occurrences
of the constructs that appear in the grammar. Consequently, a PCFG
defines a probability distribution on programs that can be generated
from the grammar. For example, Figure 3 depicts a PCFG for string
expressions, which is biased towards the string concatenation op-
eration “str.++”. In this paper, we leverage a probabilistic grammar
model for the SMT-LIB2 language. We will detail its usage in the
following sections.

3 OVERVIEW
In this section, we motivate the problem of exploring the combined
formula-configuration search space, highlight its challenges, and
sketch our solutions.

3.1 Motivation
An ideal fuzzer is desired to thoroughly exercise the algorithmic
components of an SMT solver under test. To this end, as illustrated
in § 2.2, it is often necessary to supply the solver with specific
options to control the behavioral aspects of different algorithmic
components. Thus, augmenting the fuzzing search space to include
the SMT solver’s configuration space has great potential for im-
proving the fuzzing capability.

Intuitively, given an input formula and a solver under test, the
fuzzer can try different solver configurations bymutating the solver’s
options. Unfortunately, randomly mutating the vast number of op-
tions is often ineffective, for the following three reasons:
• Conflicting mutation: The solver rejects the formula when
some options are mutated improperly. For instance, if a for-
mula contains the command “get-unsat-core”, the option
produce-unsat-cores in CVC4 should be set to true; oth-
erwise, the formulas would fail to pass the option checking
phase of CVC4.
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• Invalid mutation: For the formula, different values of an op-
tion have no effects on the behavior of the solver. For exam-
ple, the Z3 option smt.str_theory in Table 1 only controls
the decision procedures for string formulas and, thus, does
not affect real or bit-vector formulas.
• Ineffective mutation: An option can hold many different val-
ues, and it is possible that only under certain values can
it trigger bugs in the solver. For example, the Z3 option
sat.restart_factor in Table 1 is double-typed and has
infinite values.

As a result, blindly exploring an SMT solver’s configuration space
can result in a sharp reduction in fuzzing efficiency and significantly
discount the effectiveness.

3.2 Challenges and Approaches
At first glance, Falcon is a grammar-based generative fuzzer: it
generates SMT formulas using a context-free grammar. For a gener-
ated formula, Falcon further attempts to explore the configuration
space of a solver by mutating the solver options. The goal here is
to exercise the relevant algorithmic components of the solver and
find bug-revealing formula-configuration pairs. To improve the ef-
fectiveness of the mutation, our key idea is to exploit the semantic
correlations between the formula operations and the solver options,
as exemplified in § 3.1.

However, there are two major challenges for inferring and uti-
lizing the operation-option correlations.
• No prior domain knowledge. First, we need to identify the
options correlated to a formula, to reduce the number of
conflicting or invalid mutations. Manually tracking the cor-
relations between formula operations and solver options is
tedious and often ineffective, because the number of opera-
tions and options can be enormous.
• Mutation strategies for options. Second, we need to fuzz the
configuration space by mutating the correlated solver op-
tions, each of which can have many values to choose from.
The values can be either discrete (e.g., {1, 2, . . . , 6 }) or con-
tinuous (e.g., [−∞, +∞]).

Falcon addresses the above challenges in two phases, as illus-
trated in Figure 1.
• Operation-Option Correlation Learning (§ 4.1). The first phase
uses a data-driven approach to infer the correlations between
formula operations and solver options. The underlying intu-
ition is: when solving the same formula, if different values
of an option behave differently (e.g., in terms of the solving
time, satisfiability results, or executed code), then the option
is likely to be correlated with the operations in the formula.
Our key idea is to iteratively sample formulas and solver
configurations, during which we aggregate the evidence of
correlations. As shown in Figure 1, the learned correlations
can be preserved to handle unseen SMT formulas.
• Adaptive Formula-Configuration Fuzzing (§ 4.2). The second
phase aims to generate diverse formula-configuration pairs
to test SMT solvers. Specifically, we present an approach that
effectively mutates the solver options for the generated for-
mulas. First, using the correlations learned in the first phase,
Falcon can prioritize the set of options that are correlated to

a formula. Second, by incorporating coverage information
as the feedback, Falcon adaptively mutates the correlated
solver options, further improving effectiveness.

4 METHODOLOGY
In this section, we explain the technical details of Falcon. We first
present the procedure for learning the operation-option correlation.
We then describe the key fuzzing engine that adaptively generates
formula-configuration pairs to stress-test SMT solvers.

4.1 Operation-Option Correlation Learning
We first formally define the concept of operation-option correlation,
and then detail the types of correlations. Following that, we present
a random simulation based approach for automatically inferring
the correlations. Finally, we illustrate the use of the correlations for
fuzzing SMT solvers.

Defining the Operation-Option Correlations. To identify the
correlations among formula operations and solver options, we need
a measurement to examine the effects of an option. To this end,
we define the observable output of a solver as any quantitative and
measurable information when solving an SMT formula. Specifically,
we use the solving time, satisfiability results, and the SMT solver’s
code coverage as the observable outputs, because intuitively, they
reflect the differences of the solver configurations. Then, we can
define the concept of an operation-option correlation as below.

Definition 4.1. Let S = {s1, s2, . . . , sm } andO = {o1,o2, . . . ,on } be
two sets of formula operations and solver options, respectively. We
say that oi correlates with sj , if when solving formulas containing
sj , different values of oi have a high probability of resulting in
different observable outputs.

As illustrated in § 2, SMT solver options have diverse functional-
ities, which can control the behavior aspects of the simplifications
and decision procedures. We observe that the options are typically
correlated with the syntactic features of the formulas. More con-
cretely, we differentiate three categories of correlations between a
pair (sj ,oi ) of operation sj and option oi :
• Conflict: Mutating the option can lead to the rejection of a
formula. For example, if a formula contains the “push/pop”
commands, then the option sygus-rr in CVC4 should not
be set to true, because otherwise, the formula would fail to
pass the option checking phase of the solver.
• Irrelevancy: The option does not affect the observable out-
puts. For example, the option rewriter.elim_rem in Z3 has
no effects on formulas without “rem” function symbols, be-
cause it controls a simplification algorithm that works only
for the “rem” function.
• Relevancy: The option can affect the observable outputs. For
example, if there are “get-unsat-core” commands in a for-
mula, then the option smt.core.minimize in Z3 is relevant
to the formula, because the option controls the algorithms
for generating unsat cores. 2

In practice, we only adopt the “Relevancy” among the three kinds,
because “Conflict” options cannot pass the option checking, i.e.,
2If smt.core.minimize is true, Z3 will attempt to generate the minimal unsat core.
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Algorithm 1: Random simulation for learning the operation-
option correlations.
Input: Formula operations S = {s1, s2, . . . , sm } and solver

options O = {o1,o2, . . . ,on }
Output: Probabilities of correlations between the operations

in S and the options in O
1 ∀(si ∈ S ∧ oj ∈ O ). p(si ,oj ) ← 0;
2 while time limit is not reached do
3 Sk ← select k elements from S ; /* restrict the

operation kinds in the tranining formulas */

4 ΠSk ← generate a set of formulas that use only Sk ;
5 foreach formula φ ∈ ΠSk do
6 foreach option o ∈ O do
7 solve φ by changing the values of o;
8 if o results in no conflict and affects the observable

outputs then
9 foreach operation s ∈ Sk do

10 increase the value of p(s,o) ;

the SMT solving results change from “sat/unsat” to “error”. Besides,
irrelevant options make no contributions to the exploration of the
wider search space, as it does not affect the internal solving process.

Learning theOperation-OptionCorrelations. Identifying the
correlations requires domain knowledge about the SMT solvers’ im-
plementations. A user could read the source code of an SMT solver
to try to understand what solver options and formula operations
can be correlated. However, the manual approach could require a
significant investment of time.

To automatize this process, we utilize the idea of random simu-
lation [45] to infer the operation-option correlations. Our intuition
is: given the same SMT formula, if different values of an option
cause the solver to behave differently, then the option is likely to
correlate with the operations in the formula. Therefore, the over-
all method is to repeatedly sample SMT formulas with restricted
formula operations, solve them under different configurations, and
gather evidence of the correlations.

Algorithm 1 outlines the procedure, which does not assume any
prior knowledge about the solver implementations. The algorithm
tracks a probability of correlation for each operation-option pair
(si ,oj ), denoted as p(si ,oj ) . Initially, we assume there is no prior
knowledge of the correlations, so we set each probability to 0 (line 1).
Next, we attempt to learn the correlations directly from the solving
process feedback. In each round of the iteration, we first gener-
ate a group of training formulas, each of which has only k kinds
of operations (lines 3-4). We then hand each formula to the SMT
solver, which solves the formula under different configurations. If
the outputs contain option conflicts, we do not increase the proba-
bilities of correlations. Once the observable output emerges,3 the
probabilities of correlations are updated for each formula (line 10).
3The differences in satisfiability results and code coverage can be measured easily.
For the solving time, we solve each formula 20 times per configuration, and conduct
the Mann-Whitney U-test to examine whether the solving time of two configurations
significantly differs (with p-values <0.01)

rwriter.
elim_rem

smt.core.
minimize

blast_
euality

push 0 0 0

get-unsat-core 0 1 0

rem 1 0 0

(set-logic QF_NIA)
(declare-const x Int)
(declare-const y Int)
(assert (> x 6))
(push 1) 
(check-sat)
(get-unsat-core)

(b) Pre-inferred correlations.(a) An integer formula.

Figure 4: An example of using pre-inferred correlations to
process an unseen formula.

There are two noteworthy points about Algorithm 1. First, since
different formula operations may interfere with each other when
learning the correlations, we restrict the number of operation kinds
(k in the algorithm) in the training formulas (line 3).4 This is done
by tuning the PCFG-based formula generator (§ 2.3), i.e., setting
the probabilities of some production rules to zero. Second, when
changing the solver configurations for a formula, we only mutate
one option (line 7). This is because our goal is to learn the corre-
lations in Definition. 4.1, which concerns the pairing of a formula
operation and a solver option.

Example 4.1. In Z3, the option blast_equality is irrelevant to
formulas containing “push/pop” operations, because (1) the pres-
ence of “push/pop” commands means that the solver is in the
incremental solving mode, and (2) the incremental solver of Z3
never calls the bit-blasting procedure [35], which is affected by
blast_equality. Therefore, when we generate a set of SMT formu-
las that contain “push/pop”, different values of the option are very
likely to have no effects on the observable outputs. Consequently,
the probabilities p(push,blast_equality) and p(pop,blast_equality)
are not increased by Algorithm 1.

Implications for Fuzzing. The correlation information has sev-
eral benefits for the subsequent fuzzing process. Specifically, it en-
ables the fuzzer to exploit the semantic information of an unseen
formula when knowing only its syntactic features. More concretely,
given an SMT formula, we first identify the correlated solver op-
tions by leveraging the pre-inferred operation-option correlations.
We can then explore the algorithmic components related to the
formula, by mutating the relevant solver options.

Example 4.2. Suppose the fuzzer generates a formula shown in
Figure 4(a). Instead of just feeding the formula to an SMT solver
under test, we would like to explore the configuration space of
the solver by mutating its options, in an attempt to exercise more
algorithmic components with the same formula.

First, we compute the features of the formula as the set of op-
erations it contains, which is { “>”, “push”, “get-unsat-core” }. Sec-
ond, we combine the features and the pre-inferred correlations
(shown in Figure 4(b)) to obtain the formula’s relevant options.
Specifically, we have (1) the option rewriter.elim_rem is irrele-
vant since the formula contains no “rem” functions, (2) the option
blast_equality is irrelevant since “push” is in the set of opera-
tions, and (3) the option smt.core.minimize is relevant because of

4In the implementation, we set k to 4 based on our experience.
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the “get-unsat-core” command. Therefore, we can mutate the value
of smt.core.minimize to obtain different solver configurations.
As a result, we reduce the configuration space with respect to a
particular formula.

4.2 Adaptive Formula-Configuration Fuzzing
With the inferred operation-option correlations, our fuzzing engine
consists of two sub-components, which generates SMT formulas
and explores solver configurations, respectively.

Overview of Falcon. Our fuzzer can find the following three
types of bugs in SMT solvers:
• Correctness bugs: By “correctness”, we refer to three kinds of
bugs in a solver’s results:

(1) Refutation correctness: a formula is satisfiable, but the
solver yields “unsat”;

(2) Solution correctness: a formula is unsatisfiable, but the
solver yields “sat”;

(3) Invalid model : a formula is satisfiable and the solver yields
“sat”, but the solver gives an infeasible model that falsifies
the formula. 5

• Crash bugs: The solver terminates abnormally when solv-
ing a formula, which can be caused by assertion failures or
memory safety problems such as buffer overflow.
• Performance bugs: The solver cannot terminate on a formula
for a long time. We regard such cases as bugs only when the
developers confirm that implementation issues cause them.

Algorithm 2 presents the general fuzzing process. The three sets
soundbugs, invalid_models, and crashes are used to collect soundness,
invalid model, and crash bugs, respectively (line 1). All of them are
initialized to the empty set.

In each round of the main loop, we first generate a formula φ
using a context-free grammar, and then hand it to the SMT solver
(lines 3-4). We then leverage the inferred operation-option corre-
lations to identify the correlated solver options for the formula
(line 8). Based on the correlation information, we run the config-
uration fuzzer to mutate the solver options (line 11), and instruct
the solver to solve φ under a new configuration (line 12). Then,
we check whether the solver gives a consistent answer or not. If
not, we have observed a soundness bug (line 14). If the answer is
consistent and “sat”, but the solver returns a model that falsifies φ ′,
we have found an invalid model bug (line 18). Finally, if the solver
crashes on the seed or the mutant, we have found a candidate crash
bug (line 6 and line 20).

In what follows, we first briefly describe the formula generator.
We then focus on presenting the configuration fuzzer, including
the termination condition (line 10) and the concrete strategies for
mutating solver options (line 11).

Sampling SMT Formulas. Similar to conventional generative
fuzzers for structural inputs [28, 38, 43, 63], we can generate SMT
formulas from scratch, by using the context-free grammar for the
SMT-LIB2 language. However, without an extra mechanism to con-
trol the generation strategy, the exhaustive test production is ex-
plosive, and the testing coverage is often unbalanced [34, 47].
5A model for a formula φ is a function that maps all variables in vars (φ ) to values
in their respective domains such that φ evaluates to true.

Algorithm 2:Main procedure of the fuzzing phase.
Input: An SMT solver under test and a grammar G
Output: The set of candidate bugs

1 crashes ← ∅, soundbuдs ← ∅, invalid_models ← ∅;
2 while time limit is not reached do
3 φ ← generate a formula with the grammar G;
4 r ← solve φ using the SMT solver;
5 if r == “crash” then
6 crashes ← crashes ∪ {φ};
7 continue;
8 opts ← identify the correlated solver options for φ;
9 /* start mutating the solver options for φ */

10 while no termination criterion met do
11 c ← a solver configuration by mutating opts;
12 rc ← solve φ under the configuration c;
13 if rc , r then
14 soundbuдs ← soundbuдs ∪ {(φ, c )};
15 else if rc == “sat” then
16 M ← a model returned by S ;
17 if M does not satisfy φ then
18 invaid_models ← invaid_models ∪ {φ ′};

19 else if rc == “crash” then
20 crashes ← crashes ∪ {(φ, c )};

To better explore the formula space, we utilize a probabilistic
context-free grammar (PCFG) model (§ 2.3). The probabilities deter-
mine the relative occurrences of the constructs that appear in the
grammar. Given pre-assigned probabilities, our algorithm enforces
the sampled SMT formulas to be uniformly distributed over the
formula space described by the grammar. Thus, diversifying the
probabilities enables us to generate formulas with diverse syntactic
features. Following the idea of swarm testing [18, 33], 6 we ran-
domly assign several groups of probabilities, which naturally yield
different variants of PCFGs, and then sample SMT formulas from
the grammars.

Fuzzing Solver Configurations. As illustrated in § 3.1, in the
interests of maximizing coverage and fault detection, we propose to
augment the fuzzing search space to include SMT solvers’ configura-
tion space. Prior work [12, 14, 16, 46, 60, 67] has not emphasized the
exploration of the configuration space, thus losing many optimiza-
tion opportunities. Specifically, given a formula, our configuration
fuzzer is responsible for searching solver configurations by mutat-
ing a vast set of options.

First, as discussed in § 4.1 and illustrated in Algorithm 2, we
utilize the learned operation-option correlations to identify the
conflicting and irrelevant options. If the number of those options are
large enough, the correlation information can produce a dramatic
size reduction of the search space of the solver configurations.

6 In Swarm testing, a test configuration determines the behaviors of the input generator,
such as the generation probability of various kinds of statements for a C program gener-
ator. Swarm testing aims to generate diverse test cases by randomizing configurations
of the input generator.
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Second, it remains vital to mutate the values of the relevant
options, each of which can have two or more values. To this end, we
adopt a genetic algorithm to optimize the mutation strategies. The
overall idea is to incorporate branch coverage as feedback to guide
the evolutionary search. Algorithm 3 outlines the procedure, which
randomly initializes the option value vectors V0. The algorithm
terminates when the code coverage remains unchanged during
ten consecutive iterations, or the number of offsprings reaches an
upper bound (100) (line 3). In what follows, we detail the genetic
operators. For ease of presentation, we assume that the relevant
options are specified in Table 1.

Search Space. The search space is represented by the possible
values of the relevant solver options. As exemplified in Table 1, the
option values can be in discrete or continuous space. For instance,
the fourth option sat.restart.refactor has a default value 1.5,
yet it accepts floating-point numbers with infinite ranges. Our goal
is to better mutate the option value vectorv = {v1,v2,v3,v4}, by
attempting to cover more branches. Accordingly, the algorithmic
components in the SMT solver can be explored more thoroughly.

Fitness. The fitness in our setting is to evaluate the possibility
of options’ values in exploring more algorithmic components. To
this end, we adopt the branch coverage as the fitness function.
Algorithm 3 runs such a fitness function for each configuration
associated with their values (line 4). After that, the n top configu-
rations with the highest fitness are chosen for producing the next
generation (line 5). This process ensures that the configurations
selected by the fitness can produce better coverage results.

Crossover Operator. The crossover operator is a vital means that
generates offsprings by composing parent solutions. In our setting,
the solution is a vector of option values. Therefore, the crossover
operator has to generate two offsprings p and q by shuffling the
values in parent solutions u and v (line 7). This step first gener-
ates a random crossover point µ to split the parent solutions for
crossover. Then, the first offspring p inherits the first µ option
values from parent u, while the rest are inherited from parent v .
On the contrary, the second offspring inherits the leftover of what
the first offspring inherits from the two parents. For example, we
choose a separator between the 2nd and the 3th options. Let two
parents be {u1,u2,u3,u4} and {v1,v2,v3,v4}, two offspring value
vectors {u1,u2,v3,v4} and {v1,v2,u3,u4} are generated.

Mutation Operator. When a new offspringv is generated, there
is a probability 1/|v | for each option value vj to be mutated (line 8).
Options are mutated by their types: booleans are mutated by negat-
ing their values, e.g., from true to false; integers are mutated by
adding a random delta value; floating-point numbers are mutated
using polynomial mutation [24], the standard real number muta-
tion technique; strings are mutated by shuffling the list of available
values for that option, e.g., from “seq” to “z3str3” for the Z3 op-
tion smt.string_solver.

5 IMPLEMENTATION
We have implemented Falcon in a total of 13,415 lines of Python
code. Falcon can be used with any SMT solver that takes as input the
SMT-LIB2 formulas, and it supports most of the first-order theories
within the SMT-LIB 2.6 standard [7].

Algorithm 3: Genetic algorithm for optimizing the strategy
of mutating solver options.
Input: Initial option value vectors V0
Output: Optimized option value vectors Vk

1 i ← 0; // ith generation;
2 Vi ← initial option value vectors;
3 while no termination criterion met do
4 fitness(Vi );
5 values ← top n option value vectors with highest fitness;
6 foreach u,v ∈ values do
7 p,q ← crossover(u,v );
8 p′,q′ ← mutate(p,q);
9 Vi+1 ← Vi+1 ∪ {p′,q′};

Formula Generation. Falcon can generate syntactically valid
SMT formulas from scratch, by using a probabilistic context-free
grammar (§ 2.3). Recall that both the learning phase (§ 4.1) and
the fuzzing phase (§ 4.2) need to generate formulas. In the learn-
ing phase, each formula should have a small number of operation
kinds, to reduce the interference among different operations. This
is done by setting some probabilities in the grammar to zero. In
the fuzzing phase, we do not restrict operation kinds in the for-
mulas, but attempt to test different operation combinations. Thus,
we use multiple groups of probabilities to generate formulas with
diversified syntactic features.

Test Case Reduction. When a bug is revealed, we need to re-
duce the size of the bug-triggering formula by removing the bug-
irrelevant fragments. A reduced version of the formula can help
the developers diagnose the bug. To automate the test case reduc-
tion, we implement a test case minimizer on top of ddSMT [49],
a delta debugger tailored for the SMT-LIB2 language. ddSMT was
introduced in 2013 and is only compatible with limited theories. We
have extended ddSMT to support more theories, such as floating
points, strings, sets, recursive functions, and abstract data types, to
name just a few.

Testing Process. Our testing process is automated and runs
continuously, which involves little human intervention. At each
iteration, Falcon tests SMT solvers by randomly generating an SMT
formula and mutating solver options for the formula. The manual
effort mainly comes from confirming that a reduced SMT formula
is valid, and checking whether the new bug is duplicate to any
existing bugs in the solvers’ GitHub issue trackers.

6 EVALUATION
In this section, we design a series of experiments to investigate the
following research questions:
• RQ1: How effective is Falcon in detecting bugs in state-the-
art SMT solvers?
• RQ2: How precise are the operation-option correlations
learned by Falcon?
• RQ3: How do the key components of Falcon contribute to
its effectiveness?
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• RQ4: How does Falcon compare against existing fuzzers?
Can Falcon enhance existing fuzzers, by utilizing the learned
operation-option correlations and the mutation strategies
for solver options?

6.1 Experimental Setup
Targeted Solvers. We select CVC4 [6] and Z3 [22] for the exper-

imental evaluation, which have 457 and 574 options, respectively.
We choose the solvers by following four criteria. First, they are
widely used in academia and/or industry. Second, they support
most of the features and logics in the SMT-LIB2 standard and have
state-of-the-art performance. Third, they have open issue track-
ers on GitHub, and their developers are responsive to bug reports.
Fourth, they are mature and have been extensively tested by previ-
ous efforts [12, 14, 46, 60, 66, 67].

We detect candidate soundness bugs via differential testing: If
different configurations of a solver yield different solving results
for the same formula, then the solver may have a bug (lines 13-14,
Algorithm 2). We find invalid model bugs using the CVC4 option
check-models and the Z3 option model_validate. We compile
CVC4 and Z3 with assertions and Addressantizer [61] enabled, to
detect crash bugs. After collecting and reducing the bug candidates,
we then contact the developers to confirm the bugs.

Methodology. To answer RQ1, we report all the correctness
bugs, crash bugs, and performance bugs found by Falcon. When
studying RQ3-RQ4, we only report the detected correctness bugs
and crash bugs, because a performance bug requires a much longer
time to verify. Following the commonly-used guidelines [42] for
evaluating fuzzing techniques, we run the studied fuzzers with a
time budget of twenty-four hours, using the latest Git commits
of the SMT solvers at the time of writing. Besides, we run each
experiment ten times and use the average data as the final results.

We count the number of unique crash bugs as follows. If a crash is
caused by assertion failures, the SMT solver can print the assertion
line. We compare the line information to prune duplicate bugs. 7 If
a crash is due to memory safety problems such as buffer overflow,
we use the stack trace provided by the AddressSanitizer for pruning
the duplicates.

Environment. We conduct all the experiments on a Linux work-
station with an 80-core Intel (R) Xeon CPU@2.42 GHz and 256 GB
RAM, running Ubuntu 16.04 operation system. We use the GNU
coverage tool gcov to measure the code coverage. All the tools are
set to run in single-threaded mode.

6.2 Discovering Bugs
Summary of the Results. From March 2020 to August 2020,

we were running Falcon to test the latest GitHub commits of CVC4
and Z3. The bug reports are publicly available at the site below for
independent validation.

https://smtfuzz.github.io/
Enormous Number of Bugs. Table 2 summarizes the status of

the reports. “Reported” represents the unique bugs we report after
7It is possible that two formulas trigger the same assertion failures, but they have
different root causes. In this experiment, we regard them as one bug, because the root
causes need to be confirmed by the developers.

Table 2: Status the bugs found by Falcon.

Status CVC4 Z3 Total

Reported 164 534 698
Confirmed 105 413 518
Fixed 80 389 469
Duplicate 34 53 87
Invalid 12 65 77

Table 3: Types of the bugs among the confirmed bugs.

Type CVC4 Z3 Total

Correctness 19 85 104
Crash 80 324 404
Performance 6 4 10

Table 4: Number of supplied solver options among the con-
firmed bugs.

#Options CVC4 Z3 Total

0 21 19 40
1 34 92 126
2 16 96 112
3+ 34 206 240

de-duplicating by ourselves; “Confirmed” represents the bugs that
are confirmed by the developers as real and unique bugs; “Fixed”
represents a subset of the confirmed bugs that have been fixed
by the developers through at least one bug fixing commit; “Dupli-
cate” represents those bugs that are identified by the developers
as duplicate; “Invalid” represents the bugs that are rejected by the
developers (e.g., due to misconfigurations). As can be seen, Falcon
finds more than 500 confirmed bugs in the two SMT solvers. All
the bugs are previously unknown, and the majority of the bugs are
long latent despite extensive prior testing efforts.

Majority of the Theories Affected. Falcon has found bugs in almost
all the SMT-LIB2 theories, such as (non)linear integer and real
arithmetics, bit-vectors, uninterpreted functions, arrays, floating
points, strings, sets, and the combinations of these theories. At the
time of writing, 469 of the bugs have already been fixed by the
solver developers.

Diverse Bug Types. As shown in Table 3, the bugs detected by
Falcon have a wide range of types. Among the confirmed ones,
crash bugs are most frequent (404), followed by correctness bugs
(104), and performance issues (10). Notably, Falcon finds 19 and 80
correctness bugs in CVC4 and Z3, respectively. Most of the correctness
bugs were fixed promptly, which makes the solvers more reliable.

Impact of Solver Options. We have also examined the impact of
exploring SMT solvers’ configuration spaces. Table 4 summarizes
the number of involved solver options among the confirmed bugs.
As can be seen, more than 90% of the bugs are due to configuration
fuzzing, and 46% of them involve more than 3 solver options. The

https://smtfuzz.github.io/


Fuzzing SMT Solvers via Two-Dimensional Input Space Exploration ISSTA ’21, July 11–17, 2021, Virtual, Denmark

integers bit-vectors strings

70

80

67

84
81

Figure 5: Precision of the sampled correlation pairs for three
selected domains.

results clearly demonstrate the importance of fuzzing the configu-
ration space for bug finding.

Feedback from the Developers. We have received very positive
feedback from the solver developers. As an example, Falcon detects
dozens of bugs in a new decision procedure for integer and real
arithmetics in Z3, which has replaced the previously default arith-
metic solver. To quote the responses of a Z3’s developer, “Many of
these bug reports contribute to making Z3 solid for unsuspecting and
innocent users.” “ There are many good things coming out: proof ob-
jects are getting scrutinized, and smt.arith.solver=6 is exercised much
more than simply running on benchmarks the SMT-LIB2 repository 8

provides.”
Many solver developers maintain their own regression test suites

to validate their solvers. During the six months of extensive testing,
the test cases produced by Falcon were continually added to the
SMT solvers’ official regression test suits.

Takeaways. Falcon is highly effective in finding a large number
of diverse bugs that affect most of the SMT-LIB2 theories. Besides,
its findings are significant and well-recognized by the developers.

6.3 Precision of the Learned Correlations
We ran Algorithm 1 for roughly two weeks to learn the operation-
option correlations in CVC4 and Z3. Note that, it is non-trivial to
evaluate the precision and recall of the learned correlations because
there is no existing oracle. As an SMT solver can support hundreds
of formula operations and hundreds of algorithmic options, man-
ually verifying all the results requires domain knowledge and an
immense amount of time.

Thus, to provide a sense of the observed precision, we select
three domains for the study, including integers, bit-vectors, and
strings. We sample 100 learned correlation pairs for each of the
domain, We then conduct a cross-checking manual process to verify
the precision of the sampled data.

Figure 5 summaries the true positive rates. In general, the learned
correlations are mode effective for bit-vectors and strings, because
they typically have many kinds of formula operations. Besides,
there are many algorithms specialized for the operations, such as
different rewriting rules. In particular, formula rewriters can be as
important as the decision procedure for bit-vectors and strings [52].

8http://smtlib.cs.uiowa.edu/benchmarks.shtml

Table 5: Line (denoted “L”), function (denoted “F”), and
branch (denoted “B”) coverage achieved by the four variants
of our approach.

Falcon Falcon-Search Falcon-Learn Falcon-NoOpt

L 40.5% 27.9% 29.9% 20.4%
CVC4 F 51.7% 37.2% 40.2% 29.4%

B 14.8% 8.5% 9.5% 6.9%
L 42.9% 28.8% 34.8% 19.2%

Z3 F 45.6% 32.7% 38.6% 20.3%
B 19.2% 11.6% 14.3% 5.0%

6.4 Evaluation of Key Components
In this section, we present the results of an ablation study, which
aims to investigate the contributions of the components in our
approach to its overall effectiveness.

Setup. We compare the following four different variants of our
fuzzer, in terms of code coverage and bug detection.
• Falcon, the standard strategy presented in this paper, which
applies all the optimizations in § 4.
• Falcon-Search leverages the genetic algorithm (§ 4.2) to mu-
tates all solver options, without running the learning phase
to infer the operation-option correlations.
• Falcon-Learn learns the operation-option correlations (§ 4.1),
but does not apply the genetic algorithm to guide the muta-
tion. Instead, we configure it to mutate the relevant solver
options randomly.
• Falcon-NoOpt only feeds a generated formula to the SMT
solver once, without further exploring the configuration
space by mutating the solver’s options.

Results. Table 5 summarizes the code coverage achieved by the
four variants of our fuzzer, where the numbers represent the line (L),
function (F), and branch (B) coverage, respectively. Table 6 compares
the number of detected bugs. A column “correctness” represents
the number of instances that trigger correctness bugs, and a column
“crash” represents the number of unique crashes. Figure 6 shows
the Venn-diagrams that depict the relationships between the bugs
found by Falcon, Falcon-Search, and Falcon-Learn. Briefly, we make
the following major observations.

First, the impact of the configuration space is clearly visible for
bug hunting. Specifically, Falcon detects 24 and 23 bugs in CVC4
and Z3, respectively. At the other extreme, Falcon-NoOpt only finds
4 and 2 crashes in CVC4 and Z3 respectively, and fails to detect any
correctness issues in the solvers. In total, Falcon, Falcon-Search, and
Falcon-Learn can detect 41, 7, and 23 more bugs than Falcon-NoOpt,
respectively.

Second, Falcon-Learn performs better than Falcon-Search on
both of the solvers, in terms of code coverage and bug finding.
Especially, Falcon-Learn can find 9 and 7 more bugs than Falcon-
Search in CVC4 and Z3, respectively. We notice that the learning
phase can often prune a large number of options for the fuzzing
phase. Therefore, the number of options for which Falcon-Learn
mutate can be much smaller than that of Falcon-Search. Despite
the fact that the mutation in Falcon-Learn is random, the search
space is smaller than that of Falcon-Search.

http://smtlib.cs.uiowa.edu/benchmarks.shtml
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Table 6: Bugs detected by the four variants of Falcon. The “correctness” columns represent the number of SMT instances
triggering correctness bugs. The “crash” columns represent the number of unique crashes.

Falcon Falcon-Search Falcon-Learn Falcon-NoOpt

correctness crash correctness crash correctness crash correctness crash
CVC4 2 22 0 8 2 15 0 4
Z3 9 14 1 4 3 9 0 2

2

101

22

13

6

0

Falcon

Falcon-Search Falcon-Learn

Figure 6: Venn-diagrams depicting the sets of bugs found by
Falcon, Falcon-Search, and Falcon-Learn.

As illustrated in § 2, an SMT solver can consist of many algorith-
mic components. To thoroughly exercise these components, we can
explore the solver’s configuration space by mutating the exposed
options. Without attempting to mutate the options, Falcon-NoOpt
can lose many fuzzing opportunities. Without optimizing the muta-
tion strategy, the explorations can also be less effective than Falcon,
as in the cases of Falcon-Search and Falcon-Learn.

6.5 Comparison with Existing Fuzzers
In this section, we compare Falcon against two state-of-the-art
fuzzers for testing SMT solvers:
• Storm [46] is a mutational fuzzer that mutates seed formulas
with fixed rules, which can generate satisfiable instances
from any given seed. Storm builds on Z3’s Python API, and,
thus, can fuzz the logics supported by Z3.
• YinYang [66, 67] is a mutational fuzzer that embodies two en-
gines, the semantic fusion strategy [67] and the type-aware
operation mutation strategy [66].

Since Winterer et al. [66] have shown that type-aware operation
mutation outperforms semantic fusion in bug finding and supports
much more logics, 9 we exclude semantic fusion from this study.
We denote YinYang that uses the type-aware operation mutation
strategy as OpFuzz.

Setup. To answer RQ4, we have designed two experiments.
• First, we compare Falcon against the default settings of Storm
and OpFuzz. By default, Storm does not fuzz the solvers’ con-
figuration spaces, while OpFuzz can fuzz them by mutating
the solver options randomly.

9Semantic fusion only supports integer, reals, and string formulas, while type-aware
mutation further supports bit-vectors, floats, etc.

Table 7: Line, function, and branch coverage achieved by Fal-
con, Storm, OpFuzz, Storm-Opt, and OpFuzz-Opt.

Falcon Storm OpFuzz Storm-Opt OpFuzz-Opt

L 40.5% 18.6% 25.3% 33.8% 37.9%
CVC4 F 51.7% 23.3% 33.6% 36.7% 43.9%

B 14.8% 6.4% 8.3% 9.8% 11.4%
L 42.9% 16.7% 23.7% 32.5% 38.6%

Z3 F 45.6% 17.1% 26.1% 38.4% 41.8%
B 19.2% 4.8% 9.6% 14.5% 18.6%

• Second, we use Falcon to enhance Storm and OpFuzz, by
leveraging the learned operation-option correlations (§ 4.1)
and the genetic algorithm (§ 4.2) to better fuzz the configu-
ration spaces. We denote the obtained variants of Storm and
OpFuzz as Storm-Opt and OpFuzz-Opt, respectively.

We run the tools using the same settings of § 6.4. For Storm
and OpFuzz, we collect the seed formulas by following their origi-
nal papers [46, 66], and use their default running parameters. For
Storm-Opt and OpFuzz-Opt, we configure them to use the same
set of seeds as Storm and OpFuzz. That is, we do not change the
formula mutation strategies of OpFuzz-Opt and Storm-Opt, but
only enhance them by mutating the solver options.

Results. Table 7 summarizes the results of code coverage. Ta-
ble 8 shows the comparison of bug finding.

Comparison with Vanilla Storm and OpFuzz. We can observe that
Falcon consistently achieves higher coverage for CVC4 and Z3 by
a large margin. Compared with the best fuzzer between Storm and
OpFuzz, on average, Falcon increases the line, function, and branch
coverage of the two solvers by 17.2%, 18.8%, and 8.1%, respectively.
It is noteworthy that CVC4 and Z3 have near 248 KLoC and 459
KLoC, respectively. Therefore, 1% improvement of line coverage
already translates to thousands of additionally covered lines.

Falcon detects 22 and 14 unique crash bugs in CVC4 and Z3,
respectively. Besides, it generates 2 and 9 instances that trigger
correctness bugs in CVC4 and Z3, respectively. In comparison,
Storm generates 3 formulas triggering correctness issues in Z3 but
does not find crash bugs. OpFuzz uncovers 5 and 3 unique crashes
in CVC4 and Z3 respectively, and reveals one correctness bug in Z3.
We observe that all the crashes detected by OpFuzz are included in
the bugs found by Falcon.

Using Falcon to Enhance Storm and OpFuzz. In Table 7 and Table 8,
the columns “Storm-Opt” and “OpFuzz-Opt” show the results of
applying Falcon to enhance Storm and OpFuzz. Using the same set
of seed formulas, Storm-Opt and OpFuzz-Opt can achieve much
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Table 8: Bugs detected by Falcon, Storm, OpFuzz, Storm-Opt, and OpFuzz-Opt.

Falcon Storm OpFuzz Storm-Opt OpFuzz-Opt

correctness crash correctness crash correctness crash correctness crash correctness crash
CVC4 2 22 0 0 0 5 0 11 1 13
Z3 9 14 3 0 1 3 6 4 4 8

higher coverage and detect more bugs than their unoptimized coun-
terparts. Take OpFuzz as an example. By default, it can explore the
configuration space by randomly mutating solver options. After
using Falcon to better explore the configuration spaces of CVC4
and Z3, OpFuzz-Opt improves the line coverage over OpFuzz by
12.6% for CVC4 and 14.9% for Z3. Besides, OpFuzz-Opt can find 9
and 8 more bugs in CVC4 and Z3, respectively.

To summarize, the results demonstrate that (1) compared with
Storm and OpFuzz, Falcon can result in a noticeable coverage in-
crease and find more bugs within the time limit, and (2) Falcon can
significantly increase the code coverage and bug finding capability
of Storm and OpFuzz, by optimizing the explorations of the solvers’
configuration spaces.

6.6 Case Studies on Sample Bugs
In this section, we select and discuss four reported bugs in CVC4
and Z3. Figure 7 describes the corresponding reduced SMT queries
with bug classifications and GitHub issue IDs.

Figure 7(a) shows a heap-use-after-free bug in Z3. Note that, the
bug occurs only when Z3 is called with the command-line options
rewriter.push_ite_arith=true and smt.string_solver=seq.
The bug is related to the formula simplifier affected by the option
rewriter.push_ite_arith and the string solver controlled by the
option smt.string_solver.

Figure 7(b) depicts an invalid model bug in CVC4, which is
related to a new algorithmic component affected by the option
cbqi-prereg-ins. The component named “counterexample-guided
quantifier instantiation” is recently introduced for optimizing the
solving of quantified formulas [57].

Figure 7(c) presents an invalid model bug in Z3. The bug is
related to Z3’s arithmetic solver and formula rewriters. The bug
is triggered by the command-line options smt.arith.solver=2,
rewriter.flat=false, and rewriter.push_ite_arith=true.

Figure 7(d) is a performance bug in CVC4’s bit-vector solver.
Z3 solves this formula within 0.5 seconds, but CVC4 does not ter-
minate in 10 minutes. To address the issue, the developers add a
new formula transformation rule, after which CVC can solve the
formula instantly.

6.7 Discussion
Threats to Validity. First, we validate Falcon over CVC4 and Z3,

which have also been chosen in several previous works [46, 66, 67].
However, the two SMT solvers are not necessarily representative
of other tools. In the future, we will further apply our approach to
other solvers. Second, Storm and OpFuzz are mutational fuzzers
and require seed formulas as input, which can affect the evaluation
results. To reduce the threat, we have followed the settings of the

(a) Z3 use-after-free bug 4427 (b) CVC4 invalid model bug 4243

(c) Z3 invalid model bug 3910 (d) CVC4 performance bug 4936

1 (declare-const i1 Int) 
2 (declare-const s1 String) 
3 (assert (>= (str.len s1) i1)) 
4 (push 1)
5 (assert (>= 0 (abs i1))) 
6 (pop 1) 
7 (assert (>= 0 (* i1 135
8 (mod i1 i1) i1 i1))) 
9 (push 1)

(check-sat)

1 (declare-const v1 Bool) 
2 (declare-const v2 Bool) 
3 (assert (exists (
4 (q1 (_ BitVec 12)) 
5 (q2 Bool)
6 (q3 (_ BitVec 12))) 
7 (xor v1 v2)))  
8 (assert (forall
9 ((q4 (_ BitVec 6))) v2)) 

(check-sat)

1 (declare-const b (_ BitVec 40)) 
2 (assert (bvugt (bvurem
3 ((_ rotate_right 6) b) b) b)) 
4 (check-sat)

1 (declare-const i1 Int) 
2 (assert ( >= (* 495 17 
3 (abs i1)) 287)) 
4 (check-sat)

10 10

Figure 7: Selected bug samples in CVC4 and Z3.

authors’ papers to collect the seeds. Third, to mitigate the threat
brought by randomness in fuzzing, we run each experiment ten
times and use the average data, following the evaluation instruc-
tions in the prior work [42].

Limitations. The studies demonstrate the effectiveness of our
approach, but Falcon has some limitations. First, a solver option
may only be valid for a combination of formula operations, and
therefore the learning phase could miss certain correlations that are
beyond Definition 4.1. Second, the learning phase does not explic-
itly consider the interactions of different solver options. Nonethe-
less, when adaptively mutating the set of correlated options in the
fuzzing phase, Falcon can exploit the interactions implicitly.

Future Work. There are several avenues for further improving
the effectiveness of our approach. First, the interplay of the sheer
number of formula operations and solver options can be very com-
plicated, and, thus, it is stunningly challenging to consider all of
them. A possible future direction is to consider the correlations
formed by t operators and u options in the learning phase, where
t and u are parametric. Second, currently, we follow the idea of
swarm testing to diverse the probabilities of Falcon’s formulas gen-
erator. Another future direction is using some feedback information
to optimize the probabilities, such that the generated test formulas
may be more likely to trigger exceptional behavior [27, 64].
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7 RELATEDWORK
Fuzzing SMT Solvers. FuzzSMT [14] and StringFuzz [12] use

grammar-based blackbox fuzzing to generate syntactically valid
SMT formulas. BanditFuzz [60] extends this line of work by us-
ing reinforcement learning to learn the grammatical constructs
that are likely the cause of performance issues. BtorMBT [51] uses
model-based testing to generate API calling sequences, according to
manually constructed models. Winterer et al. [66] introduce type-
aware mutations that mutate the operators in a seed formula. More
recently, several techniques have emerged for detecting soundness
bugs in SMT solvers [16, 46, 67]. They employ various strategies to
generate SMT formulas whose satisfiability is known by construc-
tion. Such ground truth acts as the test oracle, which is compared
against the actual SMT solving results to detect soundness bugs.

In this work, we introduce a framework to better explore the
combined formula-configuration space. Specifically, we propose
a data-driven approach for inferring the operation-option corre-
lations, and design a feedback-driven mechanism that adaptively
mutates solver options. Our work shows a promising direction
for fuzzing SMT solvers that can continually benefit the commu-
nity. For example, the developers can use our approach to test new
solver features, which often expose new formula operations and
algorithmic options [23].

Combinatorial Interaction Testing. There is a huge amount
of literature on combinatorial interaction testing [5, 20, 36, 41, 44,
48, 53, 56, 65, 68], which aims to test configurable systems with
large configuration spaces. Given an interaction strength t , con-
ventional approaches compute a set of configurations such that all
possible t-way combinations of option settings appear in at least
one configuration. The subject program is then tested under each
configuration in the covering array. However, prior work mainly fo-
cuses on exploiting the correlations within the configuration space.
For example, several approaches encode the relations of different
options as a Boolean formula, and then sample configurations by
generating solutions of the formula [5, 53, 56]. In comparison, our
approach rests on utilizing the correlations between the formula
space and the configuration space. By identifying such correlations,
we can reduce the configuration space w.r.t a concrete formula.

Grammar-based Fuzzing. Grammar-aware fuzzing is a popu-
lar direction in the state of the arts. Recently, there have been grow-
ing interests in satisfying both syntax and semantic correctness.
Nautuils [2] combines the execution feedback such as coverage with
tree-based mutations to prioritize the seeds with higher potential
to detect target program behaviors. CodeAlchemist [37] preserves
the semantic requirement, e.g., type correlation, as the constraint
during input generation to ensure semantic correctness. Zest [54]
combines the coverage feedback with property-based testing to
provide better guidance for seed prioritization.

Similar to conventional generative fuzzers [28, 38, 63], Falcon
constructs syntactically correct formulas from scratch. Besides,
we observe that it is insufficient to detect program flaws in SMT
solvers if unaware of the configuration space. By mutating the
correlated solver options for a test formula, we can better exploit the
semantic information of the formula, as more relevant algorithmic
components in the solver would be exercised.

HyperparameterOptimization for SMT. There have been sev-
eral approaches for automatically tuning the parameters, i.e., op-
tions, of SAT/SMT solvers [1, 4, 39, 40, 59]. Given a set of formulas,
their goal is to find proper solver configurations from a vast space
of discrete and continuous options, so that the solver can solve the
formulas faster. In comparison, we address a different problem—
learn how to mutate the options to find good solver configurations
for fuzz testing. The genetic algorithm in StratEVO [59] is closely
related to our method for mutating solver options. However, Strat-
EVO does not leverage the actual features of a formula, e.g., the
operations the formula contains. In contrast, Falcon can utilize the
inferred correlations and the features of the formula to identify the
relevant options, thereby reducing the genetic algorithm’s search
space. Besides, StratEVO uses the solving time as feedback, while
Falcon can leverage code coverage as its feedback information.

8 CONCLUSION
SMT solvers serve as the substrate for many techniques in software
engineering research and have found many practical applications
in the industry. In this paper, we have presented Falcon, which
explores the two-dimensional input space for fuzzing SMT solvers.
In six months of extensive testing, Falcon discovered 518 confirmed
bugs in CVC4 and Z3, almost all of which have been fixed, clearly
demonstrating its effectiveness.
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