
Do the Dependency Conflicts in My Project Matter?

Ying Wang
Northeastern University

Shenyang, China
wangying8052@163.com

Ming Wen
The Hong Kong University of Science

and Technology
Hong Kong, China
mwenaa@cse.ust.hk

Zhenwei Liu
Northeastern University

Shenyang, China
lzwneu@163.com

Rongxin Wu
The Hong Kong University of Science

and Technology
Hong Kong, China

wurongxin@cse.ust.hk

Rui Wang
Northeastern University

Shenyang, China
jwm080795@163.com

Bo Yang
Northeastern University

Shenyang, China
yb9506@126.com

Hai Yu
Northeastern University

Shenyang, China
yuhai@mail.neu.edu.cn

Zhiliang Zhu∗

Northeastern University
Shenyang, China

zzl@mail.neu.edu.cn

Shing-Chi Cheung∗

The Hong Kong University of Science
and Technology

Hong Kong, China
scc@cse.ust.hk

ABSTRACT

Intensive dependencies of a Java project on third-party libraries

can easily lead to the presence of multiple library or class versions

on its classpath. When this happens, JVM will load one version and

shadows the others. Dependency conflict (DC) issues occur when

the loaded version fails to cover a required feature (e.g., method) ref-

erenced by the project, thus causing runtime exceptions. However,

the warnings of duplicate classes or libraries detected by existing

build tools such as Maven can be benign since not all instances of

duplication will induce runtime exceptions, and hence are often

ignored by developers. In this paper, we conducted an empirical

study on real-world DC issues collected from large open source

projects. We studied the manifestation and fixing patterns of DC

issues. Based on our findings, we designed Decca, an automated

detection tool that assesses DC issues’ severity and filters out the

benign ones. Our evaluation results on 30 projects show that Decca

achieves a precision of 0.923 and recall of 0.766 in detecting high-

severity DC issues. Decca also detected new DC issues in these

projects. Subsequently, 20 DC bug reports were filed, and 11 of

them were confirmed by developers. Issues in 6 reports were fixed

with our suggested patches.

CCS CONCEPTS

· Software and its engineering→ Software libraries and repos-

itories;

∗Zhiliang Zhu and Shing-Chi Cheung are the corresponding authors of this paper

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236056

KEYWORDS

Empirical study, third party library, static analysis

ACM Reference Format:

Ying Wang, Ming Wen, Zhenwei Liu, Rongxin Wu, Rui Wang, Bo Yang, Hai

Yu, Zhiliang Zhu, Shing-Chi Cheung. 2018. Do the Dependency Conflicts in

My Project Matter?. In Proceedings of the 26th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engi-

neering (ESEC/FSE ’18), November 4–9, 2018, Lake Buena Vista, FL, USA.ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3236024.3236056

1 INTRODUCTION

The popularity of the Java language leads to the development of nu-

merous Java third-party libraries [69, 96]. For example, the Maven

repository [43] has indexed over 8.77 millions Java libraries. These

libraries provide divergent functionalities and are frequently lever-

aged by developers to implement new projects [102]. Specifically,

we investigated over 2,000 popular (i.e., over 50 stars or forks) Java

projects that are randomly selected from Github [24], and found

that a project directly depends on 14 different libraries on average .

Besides, since a depended library might depend on other libraries,

a host project would transitively depend on more libraries (e.g., 48

libraries on average for these investigated projects).

Such intensive dependencies on third-party libraries can easily

lead to dependency conflicts in practice. That is, multiple versions

of the same library or class are presented on the classpath. When

multiple classes with the same fully-qualified name exist in a project,

JVM will load one of them and shadow the others [95]. If these

classes are not compatible, the program can exhibit unexpected

behaviors when its components rely on the shadowed ones [72, 82].

Consider the following example. A dependency conflict issue

(i.e., #DERBY-5429 [21]) was reported to project Apache/Derby. A

Derby developer found that class JVMInfo was included in both

derbyclient.jar and derby.jar. However, if an older version of

derbyclient.jar is specified on the classpath before derby.jar,

the following error shown in Figure 1 will occur when the method
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javaDump() is triggered. This indicates that dependency conflict

issues may lead to system crashes in practice.

java.lang.NoSuchMethodError: org/apache/derby/iapi/services/info/JVMInfo.javaDump()V

at org.apache.derby.iapi.services.context.ContextManager.cleanupOnError(Unknown Source)

at org.apache.derby.impl.jdbc.TransactionResourceImpl.cleanupOnError(Unknown Source)

at org.apache.derby.impl.jdbc.EmbedConnection.<init>(Unknown Source)

at org.apache.derby.jdbc.Driver40.getNewEmbedConnection(Unknown Source)

at org.apache.derby.jdbc.InternalDriver.connect(Unknown Source)

Figure 1: A real issue #DERBY-5429 caused by dependency conflict

Java project build tools such as Maven [43] and Gradle [26], can

warn developers of duplicate JARs and classes, but they cannot iden-

tify whether the duplications are benign or harmful (e.g., causing

runtime exceptions). If the duplicate classes are identical or compat-

ible, the project runs normally even though it has unclean design or

build. On the contrary, if the duplicate classes are incompatible, the

warnings need to be carefully resolved. Most building tools provide

their own dependency management strategies to help developers

select one version of the duplicate classes during the packaging

process [75, 97]. However, these tools do not guarantee loading

the most appropriate class. Consequently, runtime exceptions will

occur if inappropriate classes are loaded. What is worse, since ex-

isting tools do not differentiate benign from harmful warnings,

developers may overlook the harmful ones and take no resolution

actions, which might lead to serious consequences.

A dependency conflict issue arises when the loaded classes are

not the expected ones of the project (i.e., the referenced feature set of

the the project is not fully covered by the loaded classes). In practice,

the dependency conflict issues can be manifested in different ways,

depending on class loading mechanisms. However, no systematic

studies have been made to understand the manifestation patterns

of dependency conflicts and the severity of these conflicts. In this

paper, we first conducted an empirical study to bridge this gap. In

particular, we collected 135 real-world dependency conflict issues

from the Java projects hosted on the Apache ecosystem [3] across

16 categories (e.g., big-data, FTP, library and testing), and explored

the following two research questions. To ease presentation, we refer

to the Dependency Conflict issues as DC issues.

• RQ1 (Issue manifestation patterns): What are the common

manifestations of DC issues? Are there patterns that can be ex-

tracted to enable automated detection of these problems?

• RQ2 (Issue fixing patterns): How do developers fix DC issues

in practice? Are there factors that affect developers’ choices of

different fixing solutions?

Answers to the two research questions enable us to better un-

derstand the characteristics of DC issues between a host project

and its referenced third-party libraries. Specifically, we found that

DC issues share three general manifestation patterns: conflicts in

library versions, conflicts in classes among libraries, and conflicts in

classes between the host project and libraries (see Section 3). The

findings provide developers with guidance to help avoid, detect,

and diagnose DC issues automatically. Besides, by further analyz-

ing the patches of the fixed DC issues (128/135), we observed that

there are four common fixing solutions in practice. In addition, by

analyzing the discussions of the corresponding issue reports, we

distilled the key information to diagnose DC issues as well as the

factors affecting the efforts required for fixing the issues.

Based on the common issue manifestations and the fixing pat-

terns revealed by our empirical study, we designed and implemented

a DC detection tool using static analysis, Decca (DependEnCy

Conflicts Assessment), to help avoid dependency conflict failures

at runtime. Specifically, Decca can assess the severity levels of

DC issues based on their impacts on the project (e.g., whether it

will cause runtime failures) and maintenance costs (e.g., the re-

quired fixing efforts). To evaluate the effectiveness and usefulness

of our approach, we first collect a high quality dataset of DC issues

with high and low severity levels. The evaluation results show that

Decca can achieve a precision of 0.923 and recall of 0.766. More

importantly, we applied Decca to analyze the latest version of 30

Java projects, which include 9.8 million lines of codes, to see if

it can detect unknown DC issues in the field. Decca successfully

detected 466 DC issues of four different severity levels (defined in

Section 4.4) from 24 projects. We further filtered out 438 benign DC

issues and reported 20 bugs which contains 28 harmful issues to the

corresponding developers, and 11 reported bugs (55%) have been

confirmed as real DC issues, which affects the projects’ reliability

and maintainability. Most of the confirmed issues are identified in

popular projects such as Apache Spark [54], Hadoop [27], Beam

[13], Google Closure-compiler [25]. More excitingly, develop-

ers have quickly fixed 6 (55%) of them by following our suggestions.

They also expressed great interests in our tool Decca. These results

show the usefulness of our approach. In summary, this paper makes

the following contributions:

• To the best of our knowledge, we conducted the first empirical

study onDC issues in open source Java projects. Our findings help

understand the characteristics of DC issues and provide guidance

to related researches (e.g., compatibility and maintainability). The

empirical study dataset is publicly available for research purpose.

• We proposed a dependency conflict detection approach based

on the knowledge we learned from our empirical study. It can

automatically detect DC issues. More importantly, it can assess

their severity levels and reduce developers’ efforts by filtering

out those benign issues.

• We implemented our approach as an open source tool Decca1.

The evaluation results on real world projects confirmed the ef-

fectiveness and practical usefulness of our approach.

2 PRELIMINARIES
2.1 Motivation
To investigate the pervasiveness of the DC problem, we collected

2,289 Java projects from Github and examined whether they contain

duplicate JARs or classes using the Maven-Dependency-Plugin

[41]. The above projects were randomly selected based on two

criteria: first, it should have achieved over 50 stars or forks (popu-

larity); second, it is built on Maven platform. The results show that

1,457 (63.65%) projects contain the same library of different ver-

sions, 1,003 (43.82%) projects contain duplicate classes in different

libraries. Besides, 954 (41.68%) of projects are affected by both of

the above two cases. These results indicate that DC problem is very

common in practice.

Dependency conflicts can have serious consequences in prac-

tice. For instance, Apache/Hadoop significantly suffers from the

1link: https://deccadc.github.io/fse18/
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DC issues, as mentioned in its issue report #HADOOP-11656 [28].

According to the issue report, Hadoop exposes a variety of third

party libraries to its downstream clients (i.e., those projects depend

on Hadoop). This caused its downstream users suffering long from

the problem of dependency conflicts. Hadoop developers have been

always searching for a good solution to resolve these conflicts. For

instance, one developer complained about the current workaround:

”We have tried dependency harmonization in the past. It doesn’t

work, because different projects have different release schedules and

different needs. Not to mention different communities. Also, projects

like HBase want to support multiple versions of Hadoop. This means

that they either have to live with mixed versions of things like Guava,

Jetty, etc. or agree to never update dependencies.”

This DC issue has lasted for 879 days (fromMar. 2, 2015 to Sep. 28,

2017), before it was resolved by shading (i.e, renaming) all its depen-

dencies into a Uber Jar [61] with the help of Maven-Shade-Plugin

[44]. However, the workaround affected 176 downstream client

projects and has induced various software maintenance problems.

Our above preliminary study has shown the pervasiveness and

significance of the DC problem.When conflicting JARs are detected,

existing software build tools, such as Maven, generally adopt an ar-

bitration mechanism to load one of the JARs. However, correctness

is not guaranteed. These tools will also give warnings of duplicate

classes. Due to lack of further analysis, many of these warnings

are false positive results. For example, in our investigated projects,

we observed that only 23.00% of the DC issues reported by Maven

attracted developers’ attention and were fixed within five subse-

quent releases. Besides, these tools do not analyze the impacts of

the DC issues on the concerned project and maintenance costs.

Consequently, developers might mistakenly overlook harmful DC

issues that lead to system crashes.

2.2 Challenges

Motivated by the above observations, we aim at detecting the DC

warnings and their severity levels in this study. An important ob-

jective in our study is to assess the severity levels for these detected

DC warnings based on their impacts on the project and their main-

tenance costs. However, effective detection and assessment of DC

issues need to address the following two challenges. First, the mani-

festations of DC issues in practice are diverse and non-deterministic.

It is because that the manifestation of DC issues depends on the

order in which the JARs are present on the classpath, while the

classpath order of dependencies might differ across different run-

ning environments [71]. In addition, the order is also affected by the

dependency management criteria of software building platforms

(e.g., Maven, Gradle). To address this challenge, we conducted an

empirical study to characterize the common manifestation patterns

of DC issues (see Section 3). Second, there are no existing empirical

evidences or tools that indicate which types of dependency conflicts

are more serious than the others. Therefore, even if dependency

conflicts have been manifested, we still do not know how to assess

the severity levels for them. To address this challenge, we further

analyzed the diverse information of the DC issue reports and their

patches, to understand how to assess their impacts on the project

at runtime and what information should be extracted to classify

their warning severities (see Section 4).

3 EMPIRICAL STUDY

This section aims at answering our proposed research questions

RQ1-2. In the following, we first present the data collection process

and then discuss our empirical findings.

3.1 Data Collection Process
To understand the manifestation and fixing patterns of DC issues,

we selected Java open source projects that are built by Maven from

the Apache ecosystem as the subjects for our empirical study due to

the following reasons. First, Apache is one of the most popular open

source software ecosystem and includes different types of software.

The subjects thus selected are representative. Moreover, the use

of Apache projects for empirical software engineering research is

common [69, 76, 79, 85, 86, 89, 99, 103]. Second, Apache projects are

well-maintained. Specifically, they use the BugZilla [16] and JIRA

[39] systems to track issues. The Apache Software Foundation

provides official support of Git [23] mirrors for all projects. The

issue reports and code repositories are open to the public, which

greatly facilitates us to study the target problem [98].

For the selected Java projects, we identified confirmed DC is-

sues in the issue tracking systems. First, we used the keywords

łlibrary”, łdependency” or łcompatibility”, etc. to narrow the is-

sues down to the compatibility problems between host projects

and third party libraries. Then, we used the keywords łconflict”

or łNoSuchMethodError”, etc. to further locate the DC issues. As

such searches returned noisy results, we refined these results by

manual checking [83]. Eventually, we obtained 135 DC issues, and

128 of them have been fixed.

Table 1 summarizes the demographics of those projects covered

by the collected 135 DC issues. They are large (up to 2,218 kLOC),

popular (up to 16,398 stars), and diverse (14 different categories, e.g.,

big data, build management, HTTP). In the following, we analyze

the 135 DC issues from the Apache projects and report our findings.

3.2 RQ1: Issue Manifestation Patterns
DC issues in Java projects can be manifested in different ways. This

RQ aims at categorizing their manifestation patterns. The catego-

rization enables us to understand how DC issues are triggered and

how they can be detected. To answer RQ1, wemanually investigated

the collected 135 bug reports and related discussions(e.g., comments

and patches). Specifically, three postgraduates first classified them

independently, and then reached a consensus by discussion if the

classification results are different among them.

We observed that DC issues can be manifested in three patterns:

(1) conflicts in library versions, (2) conflicts in classes among libraries,

and (3) conflicts in classes between the host project and libraries. These

three patterns differ in how a DC issue is triggered. We use three

examples in Figure 2 to illustrate these three patterns, respectively.

A. Conflicts in library versions (39 out of 135 issues). Suppose

a host project directly uses Lib1 and Lib2:v1, and Lib1 transi-

tively depends on Lib2:v2, where L:v denotes a library L of version

v. According to Maven’s nearest wins strategy, Maven chooses the

version that appears at the nearest to the root (host project) of the

dependency tree if there are multiple versions of the same library.

As shown in Figure 2(a), the log information in the bottom is the

dependency information printed by Maven. Only Lib2:v1 will be

packaged during the building process.Then, a system failure will oc-

cur if Lib1 invokes the features which are not included in Lib2:v1.
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Table 1: The statistics of subjects covered by collected 135 DC issues

Software Star Size (LOC)1 Categories2 Issue tracking systems Severity3 Selected issues

71
Min. Max. Avg. Min. Max. Avg.

16/28
Jira BugZilla M C B N Mi

135
10 16398 796 0.9k 2218.4k 375.3k 115 20 74 7 19 13 22

1. LOC denotes lines of codes; 1 K = 1000; 2. The software category refers to Apache official definition [5]; 3. M: Major; C:Critical; B:Block; N:Normal; Mi:Minor

For instance, in issue #YARN-6414 [66], two versions of Guava are

introduced in YARN. Their introduced dependency paths are: YARN

→ Guava:21.0 and YARN→ Hadoop→ Guava:11.0.2. As a re-

sult, Guava:11.0.2 is shadowed by Guava:21.0, as the latter is

nearer to the host project YARN. From developers’ discussions, we

found that Hadoop referenced to class LimitInputStream which

is defined in the shadowed version Guava:11.0.2 while not de-

fined in the loaded version Guava:21.0. Therefore, the project

crashed with NoClassDefFoundError.

B. Conflicts in classes among libraries (90 out of 135 issues).

Suppose that libraries Lib1 and Lib2 are present in the dependency

tree as shown in Figure 2 (b). Lib1 and Lib2 include three dupli-

cate classes A, B and C . Based on the Maven’s first declaration wins

strategy, the duplicate classes within the first declared JAR lib2

will shadow the ones included in lib1. Then, DC issue arises, if the

host project referenced to the features only defined in the shadowed

classes. The scenario generally occurs in two cases: (1) a fat JAR

repackages a library that is already declared on the classpath; and

(2) a library is renamed and unknowingly added to the classpath

twice. Taking issue #SUREFIRE-851 [59] as an example, Maven

Surefire directly depends on libraries Jaxws-rt and Gf-client.

However, library Gf-client defined class SEIModel that was in-

compatible with class SEIModel included in library Jaxws-rt.

Maven Surefire referenced to method SEIModel.getJAXBCon

text() defined in Gf-client while not defined in Jaxws-rt. Un-

fortunately, class SEIModel in Gf-client was shadowed, as li-

brary Jaxws-rt declared ahead of it on the classpath. As a result,

NoSuchMethodError occurred at runtime.

C. Conflicts in classes between host project and libraries

(6 out of 135 issues). If the host project and Lib1 include duplicate

classes A, B and C , then only those included in Lib1 will be in-

cluded during the packaging process. However, if the features only

defined in classes A, B and C of the host project have been refer-

enced, system might throw exceptions or errors. The dependency

analysis scope of Maven platform is limited to the libraries listed

in its dependency configuration script ( pom.xml). Since pom.xml

does not declare the host project [52], Maven does not even notice

the DC issues of such case. For example, in #STORM-2382 [58], host

project Storm and its dependent library Log4j included incompati-

ble classes with the same names. In particular, as Log4j is a logging

framework, several classes defined in Log4j have been moved into

Storm for specific purposes during the evolution process. Then, the

classes included in library Log4j shadowed those defined in the

host project, which leaded to a runtime failure.

These three manifestation patterns A, B and C are all ascribed

to the reason that the host project references to the unexpected

version of classes or libraries. More accurately, if the loaded classes

or libraries do not completely cover the actually referenced feature

set of the host project, runtime exceptions or errors will occur.These

findings help us understand when duplicate classes or libraries are

introduced in one project, which version will shadow the others

based on building mechanism. In addition, these findings are crucial

for us to automatically detect DC issue and distinguish the benign

and harmful DC warnings as well.

Host Project

Lib1 Lib2

Lib2

v2.0

v1.0

A B C
A

B

C

1. [INFO] [dependency:tree]
2. [INFO] groupId:Lib2:jar:v1.0
3. [INFO] groupId:Lib1:jar:v2.8
4. [INFO] +- (groupId:Lib2:jar:v2.0:compile - omitted 
for duplicate)

1. [INFO] [dependency:tree]
2. [INFO] groupId:Lib1:jar:v2.8

1. [INFO] [dependency:tree]
2. [INFO] groupId:Lib2:jar:v1.0
3. [INFO] groupId:Lib1:jar:v2.8
4. [INFO] -------------------------------------------------------
5. [WARNING] Rule 1: org.apache.maven.plugins.
enforcer.BarDuplicateClasses failed with message:
6. Duplicate classes found in:
7.    groupId:Lib2:jar:v1.0
8.    groupId:Lib1:jar:v2.0:compile
9. Duplicate classes:
10.    Lib1/A.class
11.    Lib1/B.class
12.    Lib1/C.class

a. Nearest wins strategy. Only Lib2 v1.0 will be included into the

    package, as Maven chooses the version that is nearer to the root 

    (host project) of the dependency tree.

b. First declaration wins strategy. The duplicate classes A, B and

     included in Lib1 and make them unavailable.

    B and C within Lib1 will be accessed.

A B C

A B C

A B C

Host Project

Lib1

Lib2

Host Project
Lib1

   C within the first declare JAR Lib2 will “shadow” the ones

c. Maven does not notice the conflicting classes and ultimately A, 

Figure 2: Issue manifestation patterns

3.3 RQ2: Issue Fixing Patterns

To answer RQ2, we further studied the issue reports and patches

of the 128 fixed DC issues. We aim to study (1) whether the fixing

solutions of DC issues share common patterns; (2) what factors

affect the choice of different fixing solutions; and (3) how much

effort developers spend in fixing these issues for different solutions.

Our study identified four common patterns that were applied to

fix the DC issues:

Pattern 1: Shading the conflicting libraries (25 out of 128 so-

lutions). Maven-Shade-Plugin provides the capability to package

the project in an Uber Jar [61], including its third party libraries. It

will also shade (i.e., rename) the packages of some of the libraries.

In this way, developers can relocate the classes that were included

in the shaded artifact to create a private copy of their bytecode (e.g.,

issue #SPARK-2848[56]). This solution allows multiple versions of

the same class to be referenced by the host project.

Pattern 2: Adjusting the classpath order of dependencies

(42 out of 128 solutions). The dependency order configurations pro-

vided by software build tools, play a vital role in determining a

project’s classpath. Especially, for Maven, library declaration or-

der specified in pom.xml corresponds to their appearance order

on the classpath [40]. In practice, forcing a particular dependency

order on the classpath is a strategy commonly used by developers

for fixing DC issues at a relatively low cost. For example, in issue

#HDFS-10570 [32], there were two versions of the Netty libraries

on the HDFS’s classpath and the older version shadowed the newer

one. A runtime failure occurred, as the loaded older version of

Netty does not include the features referenced by HDFS. However,

the shadowed newer version of Netty could cover all the refer-

enced features. Therefore, developers solved this issue easily by

reversing their declaration order in pom.xml. Adopting this solu-

tion to work around DC issues requires the shadowed classes define

all the features referenced by host project.
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Table 2: The relations between manifestation and fixing patterns

Manifestation Pattern 1 Pattern 2 Pattern 3 Pattern 4 Other
Pattern A 5 10 18 3 1
Pattern B 20 32 30 2 1
Pattern C 0 0 3 0 3

Pattern 3: Harmonizing library versions (51 out of 128 so-

lutions). A DC issue always occurs when multiple versions of

the same library coexist in one project but they are incompati-

ble with each other. Solutions of this pattern upgrade or downgrade

some of the JARs to resolve the version inconsistencies (e.g., issue

#HADOOP-7606 [31]). However, the solution could only be applied

to the scenario that the harmonized version completely covers the

feature set referenced by the host project. As developers discussed

in issue #HADOOP-8104 [30]:

łThe inconsistent versions of Jackson libraries (1.8 and 1.7.1)

caused the NoSuchMethodError. By manually verifying, Jackson

1.8.8 artifact contains all the methods explicitly invoked by Hadoop.

So we don’t need the mixed versions of Jackson.”

Pattern 4: Classloader customization (5 out of 128 solutions).

This solution uses dynamic module system frameworks such as

OSGI [48] and Wildfly [64], to allow different versions of the

same libraries or classes coexist in one project by creating multiple

classloaders [49, 74]. Although this solution works for most of the

DC issues, it comes with additional costs and often requires develop-

ers to have a deeper understanding of the class loader mechanism.

Besides, using these frameworks also requires the system under-

going a series of laborious refactoring operations. For instance, in

issue #CURATOR-200 [19], Curator project involved deep coupling

with an older version of Guava, and its other libraries introduced a

newer Guava release. As the host project referenced to the feature

sets included in both of these two versions, they adopted OSGI tech-

nique to keep them coexist in Curator. Since the fixing solution is

laborious and time-consuming, the developers struggled to adopt

this solution after 35 rounds of discussions.

Other workarounds (5 out of 128 solutions). The remaining

issues are resolved inmiscellaneousways. For instance, they printed

a warning on console and disabled the unexpected behaviors caused

by conflicts (e.g., issue #YARN-5271 [65]), or used a combination

of mix versions of a library to satisfy all the feature references (e.g.,

issue #CXF-5132 [20]), etc.

Diagnosis and fixing efforts. Figure 3 shows the comparisons

of the diagnosis and fixing efforts. In order to compare the efforts

required to fix DC issues, we collected another 128 non-DC issues

with the same severities as the collected DC issues aforementioned.

Pattern 1 and Pattern 4 are applicable to the scenario that the

host project references to the feature set defined in multiple ver-

sions of the same library or class, but neither of a single version

can satisfy the host project’s requirement. From the concerned dis-

cussions, developers first need to spend efforts in identifying the

duplicate classes, the loaded classes, and their referenced classes.

They then decide which solution can relocate the shadowed ones.

Besides, customizing class loaders or shading the JARs are difficult

to handle. Thus, the fixing efforts of Pattern 1 and Pattern 4 are

significantly higher than those of the others. On the contrary, ad-

justing dependency order on classpath to eliminate conflicts is a

relatively easier way to resolve the problem as shown in Figure 3.

Even so, it takes more time to diagnose for DC issues than non-DC

ones on average.
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Figure 3: Comparison of the diagnosis and issue-fixing efforts (ł1

∼ 4” = łPattern 1 ∼ 4”, ł5” refers to other workarounds, łNDec =

non-dependency conflict issues”), where (a) concerns the number

of comments for each issue, (b) concerns the number of discussion

rounds during the fixing process, and (c) concerns the number of

days from the time when the issue was reported to the time when

it was fixed.

Factors affecting the choice of solutions. Table 2 shows the

relationships between common manifestation patterns and fixing

patterns. From this table, we can tell that issues that are manifested

by type A and B can be fixed by all the four solution patterns, and

issues manifested by C are mainly fixed by harmonizing library

versions or modifying the code to work around the problems. By

further analyzing the discussions of these issue reports, we found

that the selection of these solutions are highly correlated with the

following four factors: duplicate class set, actual loaded feature set,

shadowed feature set and referenced feature set. The root cause for

all these DC issues is that the actual loaded features is a subset of

the referenced ones. If reversing the dependency declaration order

on the classpath can avoid runtime exceptions (i.e., the shadowed

features satisfy host project’s requirements), developers prefer to

adopt Pattern 2 as a workaround to fix this issue. The reason is

that it comes along with lowest cost without the requirement to

change any code. Besides, keeping version consistency via Pattern

3 is commonly adopted if the harmonized version can cover all the

referenced features. Otherwise, developers have no choice but to

use Patterns 1, 4 or other workarounds to relocate the shadowed

dependencies required by the host project to ensure the coexistence

of the conflicting JARs.

Diagnosis and fixing costs give us hints for assigning the severity

levels for DC issues. Naturally, more complicated cases should be

more carefully handled to ensure the projects’ long-term health

and improve their maintainability.

4 DEPENDENCY CONFLICT DIAGNOSIS

Despite extensive warnings given by software build tools, depen-

dency conflicts still exist and remain unresolved in 68.46% the

popular Github projects as revealed in Section 2.1. The reason is

that the existing build tools detect DC issues at library or class

level without analyzing the impacts of these issues on program be-

haviors. As such, these tools do not differentiate the benign issues

from the harmful ones. This motivates us to propose an automated

approach to analyze DC issues at a finer granularity and provide
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assessment of their severity levels. Based on our findings in RQ1,

the benign and harmful DC issues are determined by the difference

between the loaded and actually referenced classes. Combining our

observed manifestation patterns and dependency management cri-

teria of building platform, we can automatically detect the multiple

versions of classes or libraries, and identify the loaded version and

the shadowed ones on the classpath. Then, we can differentiate the

benign from harmful DC issues. As discussed in RQ2, these issues

can be further subdivided based on their diagnosis and fixing costs.

In this manner, we can help developers highlight the harmful DC

issues to avoid runtime exceptions or errors. In the following, we

first formulate the DC problem and then elaborate on our detection

algorithm and severity assessment strategy.

4.1 Problem Formulation

To ease presentation, we let p denote a host project. The set of

classes defined by the developers of the host project is called the

host class set, which is denoted asH . The set of third-party libraries

referenced by the host project is denoted as B. For each library

li ∈ B, it defines a set of classes Cli , where i indexes a third-party

library. Multiple versions of a library are uniquely indexed. We

denote all the classes defined in B as C, specifically, C = ∪∀li Cli .

Then, the set of all the classes that might appear on the classpath

is denoted K = H ∪ C. For each class ci ∈ K , we define function

f (ci ) to extract the set of all the features in ci . A feature refers

to a method in this study. Based on the above definitions, we can

formally define the dependency conflict problem among the classes

in K as follows. Note that our formulation focuses on harmful

dependency conflicts.

Definition 1. (DependencyConflict). Let c1 and c2 be any two

classes specified on the classpath. If specifying these two classes

with different orders on the classpath can lead to different program

behaviors, we define it as a dependency conflict.

According to Java’s class loading mechanism, a classpath de-

termines the locations where to find the required classes during

runtime. If multiple classes with the same fully-qualified name are

specified on the classpath, only one of them will be loaded based

on the loading mechanism of the build tool (i.e., as revealed in our

empirical study) and the others will be shadowed. To detect de-

pendency conflict issues in practice, we first need to identify those

classes Cm that have multiple versions specified on the classpath.

In order to assess the severities of the detected DC issues, we need

to analyze those features defined in these duplicate classes as well

as the features referenced by the host project as revealed by our em-

pirical study in Section 3. Therefore, for each of the class ci ∈ Cm ,

we further introduce the following concepts:

Definition 2. (Duplicate Class Set). Suppose there arem (m >

1) versions of class ci declared on classpath. We define the duplicate

class set as Di = {ci j |m > 1, 1 ≤ j ≤ m}, where ci j represents the

j-th version of class ci .

Definition 3. (Referenced Feature Set). LetRH be the feature

set directly or indirectly referenced by the host classes H . We

denote the feature set inDi asRDi = ∪∀ci j ∈Di
f (ci j ). For ci ∈ Cm ,

the referenced feature set by the host classes is Ri = RH ∩ RDi .

Definition 4. (Loaded Feature Set). Suppose cil ∈ Di is the

actual loaded version of class ci . We then define the actual loaded

feature set as Li = f (cil ).

Definition 5. (Shadowed Feature Set). Suppose cil ∈ Di is

the actual loaded version of class ci . We then define the feature set

Si = ∪∀ci j ∈Di \cil f (ci j ) as the shadowed feature set.

For each ci ∈ Cm , we can obtain the above four different sets.

Based on the observations from the empirical study, A DC issue

arises when the actual loaded feature set Li does not subsume the

referenced feature set Ri . Therefore, we say that there is a DC issue

for p if the following condition satisfies:

Ri * Li ,∃ci ∈ Cm (1)

4.2 Overview

Based on our previous observations, we propose a static analy-

sis technique involving four steps as shown in Figure 4. First, it

extracts the library dependency tree by analyzing the library depen-

dencymanagement script (e.g, pom.xml, build.gradle). Second,

it identifies duplicate libraries or classes based on the dependency

tree and bytecode (JAR or class files). Third, it deduces the loaded,

shadowed feature set based on the class loading rules of build tools.

In our study, we focus on the Maven class loading mechanisms

observed in the empirical study. However, our approach can be

easily generalized to other build environment, by adapting the cor-

responding class loading rules. Furthermore, the referenced feature

sets can be obtained via static analysis. Finally, it detects DC issues

based on the deduced feature sets and assesses their severity levels

according to their impacts on the system and maintenance costs.

Library Dependency 
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Binary Code File

Extract Library

Dependency

Tree

Lib1 Lib2

Lib4

Lib5Lib3 v2.0

Lib3 v1.0 Identify

Duplicate Libraries
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4

Figure 4: Architecture of Decca

4.3 Detecting DC Issues

According to our problem formulation in Section 4.1, the key to

detect DC issues is to identify the duplicate, referenced, loaded and

shadowed feature sets first, and then to check whether the condition

of the root cause formulated in Equation 1 is satisfied.

The findings of our empirical study towards the manifestation

patterns enable us to identify the loaded and shadowed feature sets

automatically. First, according to Pattern A, if different versions of

same libraries are in one project, the version that appears nearest

to the host project in the dependency tree will shadow the others

and make them unavailable. Second, if different libraries contain

the same classes, then the classes included in the first declared JAR

will shadow the others, based on Pattern B. Finally, as dependency

analysis scope of Maven is limited to the libraries listed within its

pom.xml, if host project and the libraries include the same classes,

then the ones in the libraries will be loaded refers to Pattern C.

Identifying the duplicate classes is straightforward since we only

need to check whether a class with the same fully-qualified name

has appeared on the classpath for multiple times. However, when

multiple versions of classes coexist in the project, one key problem

is to detect the referenced feature set Ri .
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To address this problem, we designed an algorithm, which takes

the following two parts as inputs: (1) duplicate class set Di , and (2)

dependency management script of the project under analysis. The

output of the algorithm is the referenced feature set Ri . Specifically,

the algorithm contains the following steps:

• Initializes the referenced feature set Ri as an empty collection.

• Finds the path set Pi from the host project to each library li that

contains duplicate class ci ∈ Di on the dependency tree LT .

• Extracts the reference relationships based on class names using

static analysis.

• Analyzes the libraries on each path pt ∈ Pi separately, since

static analysis does not know which version is the referenced

version if different versions of the same class coexist in bytecode.

• Performs the following tasks for each path pt ∈ Pi : (1) Identifies

the boundary feature set Bs. Boundary feature set Bs represents

the feature set defined in the host project that directly depends

on host project’s succeeding library on path pt [87], where host

project’s succeeding library is the library after the host project

on path pt . (2) Identifies the boundary feature set Be defined in

library li and directly depended by the preceding library of li on

path pt , where the preceding library of li is the library before

li on path pt . (3) For each method mt ∈ Bs, if mt directly or

transitively depends onmk ∈ Be, performs Ri ← Ri ∪Mk ∪mk ,

whereMk is the feature set used bymk .

Decca is implemented as a Maven plugin based on Soot frame-

work. It leverages Soot’s program dependency graph and call graph

APIs to identify the referenced feature set. It is well-known that

statically constructing sound and complete call graphs and program

dependence graphs for Java language is challenging due to the lan-

guage features such as dynamic binding and reflections [73, 90].

This factor affects Decca’s detection precision (See Section 5.1).

4.4 Assessing DC Severity Levels

Maven detects duplicate instances as warnings at the library or

class level, which is coarse-grained. Besides, it generates all DC

warnings without distinguishing their severity levels. If the refer-

enced feature set defined in the duplicate classes are compatible and

consistent, they have no serious effects on the host project at run-

time. Therefore, it is difficult for developers to distinguish benign

warnings from harmful ones (e.g., causing runtime exceptions) if

the generated warnings do not provide extra severity information.

Decca addresses this issue in two steps. First, it analyzes the host

project and the third-party libraries at a finer granularity, which

is at the feature level, to assess whether those duplicate instances

are harmful or not driven by our findings on the manifestation

patterns. Second, it estimates the maintenance efforts required by

the detected issues driven by our findings on the fixing solutions

to further augment the issues with severity levels. Then, Decca

will assign a DC issue to one of the four severity levels, which are

defined as follows.

Level 1: Ri ⊆ Li and Ri ⊆ Si . In this case, the referenced

feature set is a subset of the actual loaded feature set. Besides, the

shadowed version completely covers the feature set used by the

host project. This indicates that any orders of the specification of

these duplicate classes on the classpath will not induce serious

runtime errors. Therefore, this is a benign conflict and will not

affect the system reliability at runtime.

Level 2: Ri ⊆ Li and Ri * Si . In this case, the referenced

feature set is a subset of the actual loaded feature set. However,

the shadowed feature set does not cover the referenced feature

set. It is considered as a potential risk for system reliability since

different orders of the specifications of these duplicate classes on

the classpath (e.g., in different running environment or building

platform) might induce runtime errors.

Level 3: Ri * Li and Ri ⊆ Si . It is a harmful conflict, as the

actual loaded feature set does not consume the referenced feature

set. The runtime errors will occur when the expected feature cannot

be accessed. However, in this case, the shadowed feature set com-

pletely cover the feature set referenced by host project. Therefore,

it can be solved by adjusting the dependency order on the classpath,

without changing any source code.

Level 4: Ri * Li and Ri * Si . It is a harmful conflict, as the

actual loaded feature set does not cover the referenced feature set.

Besides, the shadowed feature set does not consume the referenced

feature set neither. Therefore, this type of conflicts can not be easily

resolved by adjusting the dependency orders on the classpath. To

solve these issues, it requires more efforts to ensure the multiple

versions of classes could be referenced by the host project.

DC issues detected as Level 1 and Level 2 are benign ones since

they will not cause system failures in the current version. However,

those issues at Level 2 might cause runtime errors potentially if

the dependency orders have been changed. DC issues detected as

Level 3 and Level 4 are harmful ones as they can lead to system

crashes under the current configurations. These severity levels pro-

vide developers with a deeper understanding of the detected DC

issues, and guidance to fix these bugs. For instance, DC issues at

Level 2 can be potentially avoided by fixing Pattern 3 (harmoniz-

ing library versions) and Pattern 2 (adjusting the classpath order

of dependencies) can be used as the workaround of the Level 3

DC issues. However, DC issues at Level 4 require more diagnosis

efforts since they need to be solved by fixing Pattern 1 (shading

the conflicting libraries) or Pattern 4 (classloader customization).

5 EVALUATION
We evaluate the effectiveness and usefulness of Decca using real-

world open source projects against two research questions:

• RQ3 (Effectiveness): How effective can Decca detect real DC

issues and assess their severity levels?

• RQ4 (Usefulness): Can Decca detect unknown DC issues in

real-world projects and facilitate developers in diagnosing them?

To study RQ3, we first collected a high quality dataset which

contains high-severity (i.e., Level 3 and 4) and low-severity (i.e.,

Level 1 and 2) DC issues. We then apply Decca to this dataset to

see if DC issues with high-severity can be detected.

To study RQ4, we randomly selected 30 projects from Github

and built their latest releases on Maven platform. Then, we applied

Decca to these projects to detect unknown DC issues and assess

their severity levels. Especially, we filtered out the Level 1 issues,

which will not lead to the system failures no matter how the class-

path order of dependencies is changed. For the identified issues

with Levels 2, 3 and 4 severities, we reported them to developers

using the corresponding bug tracking systems and evaluated the

usefulness of Decca based on developers’ feedbacks.
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5.1 RQ3: Effectiveness of Decca
Data collection.We constructed the dataset from the 2,289 Java

projects as mentioned in Section 2.1. Decca can detect DC issues

in four severity levels. However, it is difficult to collect the ground

truth about the exact severity levels of DC issues. In practice, devel-

opers often consider DC issues in severity at two levels: (1) high-

severity issues (include Level 3 and 4 DC issues), which will cause

runtime exceptions or errors; and (2) low-severity issues (include

Level 1 and 2 DC issues), which should not cause unexpected be-

haviors, exceptions or errors if the project and dependent libraries

remain unchanged. This categorization information would be easily

identified from bug reports or log message of commits. Therefore,

this evaluation mainly focus on whether Decca can distinguish

high-severity issues from low-severity ones. To guarantee the qual-

ity of labeling high-severity and low-severity issues, we chose the

fifth latest release of each project, since we assumed that the time

interval from fifth latest release to now is sufficient for developers to

diagnose DC issues and give solutions (fix or not). We constructed

the dataset of high-severity issues by selecting from the fixed DC

issues, since developers typically assigned severe issues with higher

priority to fix. However, it does not mean that all fixed issues must

be high-severity since developers might also fix low-severity ones

to avoid potential issues arise in future maintenance (e.g., DC issues

at Level 2). Therefore, we use the following criterion to select high-

severity issues: (1) the fixing patch is linked to a bug report which

records a runtime exception or compilation error; or (2) the commit

log message explicitly mentioned that it fixed a harmful DC issue

(i.e., causing runtime exceptions or compilation error). We collect

the dataset of low-severity DC issues from the unfixed ones. How-

ever, not being fixed so far does not necessarily mean that issue is

low severity since it might take developers a lot of time to diagnose

the issue. It has been found that bugs are usually repaired within 1

to 2 years across different projects since they were introduced to

the project [78]. Therefore, we only select those DC issues that have

not been fixed for the next 24 months as low-severity ones. The

other DC issues are ignored in our evaluation to avoid introducing

noises, since we do not have high-confidence to judge whether

their severities are high or low. In this manner, we collected 47

high-severity and 172 low-severity DC issues as the ground truth

dataset. The data collection process involves two graduate students:

one identifying the high-severity and low-severity DC instances

and the other verifying the results.

Metrics. We use Recall, Precision, and F-measure to evaluate the

performance of Decca, which are defined by the following metrics:

True Positive (TP): the conflict identified as a high-severity issue

(i.e., Level 3 or Level 4) is a high-severity issue.

False Positive (FP): the conflict identified as a high-severity issue

(i.e., Level 3 or Level 4) is a low-severity issue.

True Negative (TN): the conflict identified as a low-severity issue

(i.e., Level 1 or Level 2) is a low-severity issue.

False Negative (FN): the conflict identified as a low-severity issue

(i.e., Level 1 or Level 2) is a high-severity issue.

Based on the above four metrics, we can obtain the Recall, Preci-

sion, and F-measure as follows:

Precision =TP/(TP + FP) (2)

Recall =TP/(TP + FN ) (3)

F -measure =2 × Precision × Recall/(Precision + Recall) (4)

Precision evaluates whether Decca can detect high-severity is-

sues precisely. Recall evaluates the capability of Decca in detecting

all the high-severity issues. F -measure combines the Precision and

Recall together [100].

Results.The experimental results show that Decca identified

39 high-severity DC instances with a Precision of 0.923, a Recall of

0.766 and a F -measure of 0.837. Based on the results, we can con-

clude that Decca can effectively detect the DC issues with severity

levels. We further investigated the reason why Decca generated

false positive and negative cases of Decca. We found that, this is

mainly because static analysis cannot accurately deal with the Java

language features such as dynamic method dispatching (virtual

function invocations) and reflections [73, 90]. For instance, project

Apache/Metamodel introduced conflicting JARs Httpclient 4.4.1

and 4.5.2, and version 4.4.1 shadowed 4.5.2. By static analysis, host

project referenced to 423 features of library Httpclient, but the

loaded version 4.4.1 only defined 378 of them. Decca assesses this

DC issue as Level 4 severity. However, this is a false positive. By

further checking, we found that these uncovered 45 (i.e., 423 − 378)

features will never be executed at runtime. This discrepancy is

mainly because we adopt conservative static analysis to construct

call graph and include some false call edges in the virtual function

call sites. In another example, libraries xercesImpl and xml-apis

both included class SingleSignOnFactory, which caused a DC is-

sue in project Apache/Oodt. Based onDecca’ detection, the loaded

class defined in xml-apis could fully cover the referenced feature

set. As a result, our tool assigned Level 1 severity to this instance.

In fact, Decca ignored a case that a method in the shadowed class

was used by host project via reflection mechanism, which leaded

to a false negative warning.

5.2 RQ4: Usefulness Of Decca

Decca successfully identified 466 DC issues from 24 projects among

all the 30 projects analyzed. Among these instances, 438 (93.9%)

of them are at Level 1, 20 (4.2%) of them are at Level 2, 4 (0.08%)

of them are at Level 3, and 4 (0.08%) of them are at Level 4. After

filtering out the benign issues with Level 1, we reported issues

with Level 2, 3 and 4 to their corresponding bug tracking systems.

Our bug report includes the following information:

(1) Severity: concerning the severity options of bug tracking

system, if the detected DC instances are assessed as Level 1 or

Level 2, we labeled them as łminor” issues, otherwise as łmajor”

issues. Note that, we filter out most of the Level 1 issues. However,

to confirm our expectation in handling Level 1 issues, we randomly

sampled four issues and reported them to developers.

(2) Root cause: we listed the library pairs including duplicated

classes, or different versions of the same libraries in the project.

More importantly, we provided the differences between the feature

set of the actually loaded classes and that of the referenced ones.

(3) Fixing suggestions: according to our findings of empirical

study (Section 3.3), developers prefer to adopt fixing Pattern 2

(adjusting the classpath order of dependencies) and Pattern 3 (har-

monizing library versions) to solve DC issues as they requires less

efforts. Therefore, for the DC issues with Level 2 and Level 3

severities, we suggested developers to fix the issues by harmoniz-

ing library versions or adjusting the classpath dependency order
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Table 3: Experimental subjects and checking results

ID Project Category Revision
Size

Star Fork Availability
Severity level

Bug ID
(LOC) L1 L2 L3 L4

1 Spark [54] Big data 8077bb0 130.0k 16262 15050 Apache/Github 40 1 0 0 SPARK-23509♦
2 Beam [13] Big data a750128 337.0k 1722 1038 Apache/Github 17 2 0 0 BEAM-3690♦
3 Bahir [11] Extension tool 6ea42a8 0.9k 152 102 Apache/Github 22 0 1 1 BAHIR-159♣
4 Wicketstuff/Core [63] Container 5cc41f5 228.5k 314 293 Apache/Github 16 1 0 0 Issue #621♦
5 Javasoze clue [38] Command 23c9da4 2.8k 103 37 Github 18 1 0 0 Issue #61
6 ActiveMQ Artemis [8] Network server f6c5408 557.8k 271 326 Apache/Github 24 0 0 0 -
7 Apex Core [6] Platform 4fb580f 87.0k 277 161 Apache/Github 34 0 0 0 -
8 Ignite [33] OSGI 4e86660 2218.4k 1505 848 Apache/Github 7 0 0 0 -
9 Wicket [62] Web framework b728c69 352.5k 412 293 Apache/Github 2 0 0 0 -
10 Google/Closure-Compiler [25] JS compiler 900251b 427.6k 4005 777 Github 4 1 0 0 Issue #2815♠
11 Orientdb [47] Database 56ab1ac 496.3k 3366 718 Github 8 0 0 1 Issue #8111♠
12 Cm [18] Web application 9e6f45b 19.k 12 6 Github 5 0 0 1 Issue #1♦
13 Brooklyn [15] Cloud 48dbcc3 276.1k 69 47 Apache/Github 20 0 1 0 BROOKLYN-581
14 CarbonData [17] Big data 9f2884a 127.9k 612 391 Apache/Github 25 4 0 0 CARBONDATA-2169
15 Prestodb [53] Big data 89fed3a 0.8k 15 22 Github 16 1 0 0 Issue #29
16 Solr [57] Network Server d32048c 31.7k 295 207 Github 10 1 0 0 DATASOLR-447
17 tomcat exporter [60] Exporter 70ac377 0.9k 19 10 Apache/Github 10 2 0 0 Issue #8
18 Hadoop Common [27] Database 1e85a99 2042.8.k 5883 3987 Apache/Github 16 0 0 1 HADOOP-15261♦
19 Oozie [45] Big data 9e662c7 198.6k 364 327 Apache/Github 25 0 1 0 OOZIE-3185♠
20 Accumulo [1] Database d98843b 563.8k 343 197 Apache/Github 33 1 0 0 ACCUMULO-4812♣
21 Eclipse jetty [22] Debugging b71cd70 375.9k 1868 1134 Github 6 2 0 0 Issue #2232
22 Parquet [50] Big data b82d962 0.9k 550 465 Apache/Github 2 1 0 0 PARQUET-1236♦
23 Apex Malhar [6] Big data 0d98d05 243.7k 110 149 Apache/Github 34 1 0 0 APEXMALHAR-2556
24 Atlas [10] Framework 6770091 123.4k 33 32 Apache/Github 44 1 1 0 ATLAS-2437

♦:The issues have already been fixed. ♠:The issues were confirmed and being fixed in process.
♣:They have been confirmed as DC issues, and they are suggested to be solved by the upstream third party libraries.

based on their specific scenarios. For Level 4 issues, we suggested

them to use fixing Pattern 1 (shading the conflicting libraries) to

work around these problems.

Altogether, we reported 20 DC bugs including 28 issues (issues in

one project were combined into one bug report). As shown in Table

3, 11 bugs (55%) were confirmed by developers as real issues within

a few days. 6 out of the 11 confirmed bugs (55%) were quickly fixed

using our suggestions, 3 confirmed bugs (30%) are in the process

of being fixed, and the other 2 confirmed bugs are to be resolved

by the developers of upstream third party libraries. By further

analysis, we found that those non-severe issues (Level 2) have a

low confirmation rate (30%). Meanwhile, the severe issues (Level

3 and 4) have a higher confirmation rate (75%), which is within

our expectation. The 10 unconfirmed issues are mainly due to the

inactive maintenance of the corresponding release versions.

5.2.1 Feedback on Reported Issues. For the 6 fixed issues, the

developers agreed that the detected conflicts could bring risks to

software reliability or maintainability, and they also invited us to

upload patches to resolve the issue. In particular, 2 out of the 6 issues

(i.e., HADOOP-15261 [29] and Issue #1 [34]) are detected as Level

4 byDecca.The quick feedbacks from the corresponding developers

are within our expectations since these issues are very serious

and can cause runtime errors. The remaining four are detected

as Level 2 (i.e., BEAM-3690 [14], Issue #621 [36], SPARK-23509

[55] and PARQUET-1236 [51]). Although these issues might not

cause runtime errors at the moment, to avoid potential errors in

the future, developers still fixed them after reviewing the different

feature sets between the conflicting JARs.

Three issues (i.e., Issue #2815 [35], Issue #8111 [37] and

OOZIE-3185 [46]) have been confirmed and are being fixed in

process up till now. For example, Google Closure-Compiler

library contains library com.google.code.gson. However, its

downstream project Wicketstuff Core also includes the library

com.google.code.gson of a newer version, which introduces a

dependency conflict. This issue was detected as Level 2 DC issue.

We reported this issue to Google Closure-Compiler as Issue

#2815, and it was confirmed and supported by the developers:

łI’m encountering this problem as well. Is there a way to build the

closure compiler JAR without any dependencies packaged in it?”

Two DC issues were confirmed, but developers considered that

they should be solved by its upstream third party libraries (i.e.,

BAHIR-159 [12] and ACCUMULO-4812 [2]). For example, developers

explained in ACCUMULO-4812:

łThe conflicting JARs are being brought in through Hadoop or

ZooKeeper’s classpath, and should be addressed by their packaging.”

In addition, we randomly selected four DC issues at Level 1 to

report (e.g., ARTEMIS-1674 [9] and APEXCORE-805 [7]), since we

would like to see whether developers care about these issues. As we

expected, the developers would not like to revise their source code

urgently until they cause failures, although they acknowledged

these issues. These results indicate that Decca can help developers

filter out benign DC issues and highlight the harmful ones.

5.2.2 Feedback on DECCA. Besides confirming our reported

issues, several developers expressed interests in our tool Decca,

which is encouraging. For example, we received the following feed-

back in BEAM-3690:

łThis seems like a handy report, is the tool you used to identify this

error open source? I am curious to give it a try (also for other stuff).”

łRelated, but not the same: I have tried turning on dependency

convergence in the Maven-enforcer-plugin. We need the same

for gradle to ensure long-term health and protect from regressions.

Maybe the tool that generated this fine-grained conflicts report can

also fail the build? That would be nice.”

The above comments are made from experienced developers

[4] in the Apache Beam community. Currently, existing plugins,

such as Maven-enforcer-plugin [42] aforementioned can iden-

tify DC issues. However, Decca still attracts developers’ attention.

The feedbacks indicate that when reporting DC issues, it is crucial to
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provide developers with severity levels and more-detailed conflict-

ing information. Our tool Decca is able to achieve this. The above

results and feedbacks from developers show that the information

(e.g., severity levels) provided by Decca is useful for developers to

diagnose the DC issues in practice.

6 THREATS TO VALIDITY
Our study is subject to the following major threats to validity.

DC issue selection. The DC issue selection may threaten the

validity of our empirical study results since the keyword searching

strategy can introduce noises. To reduce this threat, we manually

inspected, re-examined and cross-validated all the collected DC

issues independently to assure the data quality.

Ground truth dataset collection for evaluation. Collecting

the ground truth dataset is challenging and can be a threat to the

evaluation results. To avoid introducing noises in our evaluation

dataset, we collected the high-severity set from those DC issues

that been fixed in the subsequent releases. Moreover, we only keep

those instances that the fixing patches are linked with bug reports

or the fixing commit logs explicitly mention them as harmful DC

issues. We collected the low-severity set from those DC issues that

have not been fixed in their subsequent releases and no related DC

issue reported in their projects during the next 24 months.

Limitation for detecting diverse types of DC issues. This

paper focuses on crash DC issues due to referencing the shadowed

features or classes. However, in some cases, the conflict could be

caused by the changes in semantics, performance or other attributes

of the duplicated libraries presented on the classpath. Decca does

not analyze the above manifestations of DC issue, which may affect

the validity of detection.

7 RELATED WORK
Library Evolution: Third-party libraries keep evolving in order

to fix previous bugs, add new features and etc. Bavota et al. ana-

lyzed the evolution of the Java libraries of the Apache ecosystem,

consisting of 147 projects, for a period of 14 years [68, 69]. Specifi-

cally, they analyzed how upgrades of a project will affect related

projects and what reasons will drive a host project to upgrade its

dependencies. Businge et al. analyzed the evolution of the Eclipse

third-party plugins [70]. In particular, they studied the source com-

patibilities between the third-party plug-ins and the Eclipse SDK

releases. The evolving of a library is embodied in the evolution

of its defined features (i.e., APIs) at a finer granularity. Therefore,

many researches focused on studying API stability during library

evolution [81, 84, 91, 93, 94]. Specifically, Robbes et al. investigated

how developers take actions to API evolutions of third-party li-

braries [93]. Due to the fast evolution of libraries, different versions

of a library might be incompatible. Raemaeker et al. analyzed the

relationship between version numbers and the binary compatibil-

ities of third-party libraries [92]. By empirical study, they found

that features defined in an older version are often unavailable in a

newer version. As a result, dependencies conflicts might occur due

to such incompatibilities if multiple versions are included in one

project. However, no existing works focus on the manifestations

and diagnosis of dependencies conflict issues.

Library Analysis: It is important for a host project to manage

its depended libraries since they are evolving. Musco et al. proposed

an approach to model the relationships between software system

and third-party libraries to better understand software evolution

[87]. In their study, they introduced the concept of software sys-

tem boundary [87], which is also adopted in our paper to identify

the feature set referenced by host project. Annosi et al. proposed

a framework to facilitate developers in upgrading third-party li-

braries [67]. Since upgrading libraries will inevitably affect existing

framework, their approach is designed mainly based on risk man-

agement. Ouni et al. proposed an approach called LibFinder [88],

which helps developers find third-party libraries in developing.

Kikas et al. analyzed the dependency network structures for multi-

ple languages [77] and found that many third-party libraries are

transitively introduced to a project. Therefore, they suggest that

developers should look more carefully when using a third-party

library to understand what dependencies are exactly included. Kula

et al. proposed an visualization tool to investigate the history of

library update [80] using the statistics of dependencies extracted

from the Maven repository. By leveraging their tool, developers

can easily identify outdated libraries. Yano et al. also proposed an

visualization tool to investigate the popular coupling usages of

third-party libraries [101]. They found that library Http-Client

3.1 and Collections 3.2.1 are frequently used together. The

coupling relations revealed by their studies can help developers

reduce the risks of using incompatible libraries. However, none

of the above studies investigated the dependency conflict issues

caused by the incompatibilities of third-party libraries, which is

well investigated in this study.

8 CONCLUSION AND FUTUREWORK
In this paper, we first conducted an empirical study to understand

and characterize DC issues between host project and third-party

libraries. We investigated 135 real DC issues collected from 71 Java

projects of Apache ecosystem to understand their common man-

ifestations and fixing strategies. Based on our empirical findings,

we formulate the dependency conflict problem and its root cause.

Furthermore, we designed and implemented an automated tech-

nique Decca to detect DC issues and assess their severity levels.

The evaluation results show that Decca can achieve a Precision

of 0.923, a Recall of 0.766, and a F -measure of 0.837. We also ap-

plied Decca to detecting new DC issues on the latest version of

other large Java projects. Encouragingly, developers confirmed and

fixed the reported bugs detected by Decca. They also showed great

interests in our proposed tool. These feedbacks from developers

demonstrate the practical usefulness of Decca.

In future, we plan to design effective techniques to help develop-

ers automatically repair DC issues. Another plan is to extend our

approach to other build frameworks such as Gradle.
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