Diagnose Crashing Faults on Production Software

Rongxin Wu
Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Hong Kong, China
wurongxin@cse.ust.hk

ABSTRACT

Software crashes are severe manifestations of software faults.
Especially, software crashes in production software usually
result in bad user experiences. Therefore, crashing faults
mostly are required to be fixed with a high priority. Diagnos-
ing crashing faults on production software is non-trivial, due
to the characteristics of production environment. In general,
it is required to address two major challenges. First, crash
reports in production software are usually numerous, since
production software is used by a large number of end users in
various environments and configurations. Especially, a single
fault may manifest as different crash reports, which makes
the prioritizing debugging and understanding faults difficult.
Second, deployed software is required to run with minimal
overhead and cannot afford a heavyweight instrumentation
approach to collect program execution information. Further-
more, end users require that the logged information should
not reveal sensitive production data. This thesis contributes
for developing crashing fault diagnosis tools that can be used
in production environment.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Debugging Aids.

General Terms

Measurement, Reliability

Keywords

Crash stack, software crash, statistical debugging, software
analytics

1. PROBLEM STATEMENT

Software crash is common in various kinds of software. It
is one of most severe manifestations of software faults. When
software crashes occur in production software, they usually

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

FSE’14, November 16-21, 2014, Hong Kong, China

Copyright 2014 ACM 978-1-4503-3056-5/14/11...$15.00
http://dx.doi.org/10.1145/2635868.2666601

result in bad user experiences and sometimes even involve
serious consequences in the critical systems. Recently, crash
reporting systems such as Windows Error Reporting [8], Ap-
ple Crash Reporter [2], and Mozilla Crash Reports [15] have
been developed and deployed to collect crash reports from
end users. When a crash occurs at a deployment site, with
the permission upon end users, these systems will collect
crash-related information such as the product name and ver-
sion, the operating system, the crash method signature, and
a crash stack. Due to the large number of users, numerous
crash reports can be collected over a short period of time.
For example, Moxzilla [15] receives 2.5 million crash reports
every day. If such crashes are not diagnosed promptly, it
adversely affects the experience of many users.

Diagnosing crashing faults, especially for production soft-
ware, is difficult. Especially, the characteristics of production
environment make it even more challenging. First, numerous
crash reports generated from a large number of end users
make it impossible for developers to manually inspect each of
them. Besides, due to the various environments and configu-
rations, a single crashing fault can manifest in different ways,
e.g. different crash stacks. The various manifestations of
crashing faults reduce the effectiveness of effort prioritization
and fault diagnosis in current crash reporting systems [8].
Due to the large volume of crash reports, developers are used
to sample only some to inspect. As such, they are not able to
ensure that all relevant crashes can be fixed by the patches
subsequently submitted. This is a reason why many bug
reports with a "fixed” status need to be re-opened afterwards
when it turns out that the bugs have not been completely
patched. Second, deployed software is required to run with
minimal overhead, so the collected information about crash-
ing faults should not result in an obvious runtime overhead
in production software. Besides, the collected information
should not expose end users’ sensitive data. Current crash
reporting systems mainly record crash stack in the crash
reports, so that there are no additional run-time overhead
and no privacy issues in crash reports. The crash stack is a
snapshot of call stack at the time of crashing and captures
very limited information about the failed executions. Some
existing techniques [10] [11] are not efficient in diagnosing
the crashing faults based on the limited information in crash
report.

Considering the characteristics of production software, we
aim to propose several techniques to assist the diagnosis of
crashing faults based on the large number of crash reports
in existing crash reporting systems.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2635868.2666601&domain=pdf&date_stamp=2014-11-11

2. RELATED WORK

Bucket crash: Bucketing crash reports is the process of
organizing similar crash reports caused by the same bug. In
production software, a large number of crash reports may
be generated daily. Many of them are actually caused by
the same bug and therefore are duplicate reports. Bucketing
crash reports [8] is useful for developers to prioritize de-
bugging efforts as well as understanding the crashing faults.
The existing crash reporting systems [2] [8] [15] leverage
some heuristics to bucket the crash reports. Due to different
environments and configurations, crashes caused by same
bugs (duplicate crashes) may manifest differently. As such,
it is still not uncommon that duplicate crashes are spread
to multiple buckets in these systems. The existence of mis-
classifying duplicate crash reports in these systems reduce
the effectiveness of effort prioritization and fault diagnosis.
Sung et al. [12] proposed to leverage call stack information
to build crash graph models and identify duplicate crash
reports based on graph similarity. Crash graphs aggregate
all the crash stack in a bucket produced by WER and treat
each function in crash stacks equally. Our proposed approach
ReBucket leverages call stack information also, but measures
the similarity of two call stacks using Position Dependent
Model. Different from crash graphs, our similarity model
treats functions differently, since the insight is that the func-
tions near the top of the call stack are more likely to be
buggy.

Reproduce crash: Reproducing crash is a debugging
step to recover the dynamic information about failed execu-
tions. ReCrash [5] was proposed to generate unit tests that
reproduce a given crash by capturing the state of method
arguments. J. Bell et al. [6] proposed to capture the non-
deterministic inputs and reproduce the crashes. However,
such captured information may expose the users’ sensitive
data and raise the privacy issues. Jin and Orso proposed a
failure reproducing tool named BugRedux [10]. BugRedux
collects different kinds of execution data from end users and
reproduces field failures using symbolic analysis. Experience
with BugRedux shows that the call sequence (the sequence
of method calls during the program execution) is the most
effective data for reproducing faults, but the overhead of col-
lecting call sequences may not still be affordable in production
software. Toward this direction, we propose a technique to
collect call sequence with less overhead. Compared with
BugRedux, our proposed technique only instruments partial
call sites and infer the rest call sites offline, which greatly
reduces the runtime overhead.

Locate crashing faults: Locating crashing faults is an
expensive activity in debugging. Over the years, various fault
localization methods (e.g., [1] [9] [13] have been proposed.
The suspicious statements in programs are ranked based on
the percentages of failed and successful test cases that exe-
cute the statements. The published methods differ mainly in
the type of execution information collected (e.g., statements
[9] or predicates [13]), and in the way they compute suspi-
ciousness scores [1]. However, those methods are not directly
applicable to crash fault localization in production software,
due to the lack of passing and failing traces. In existing
crash reporting systems, only crash stack is available. The
crash stacks do not contain complete successful and failed
execution traces. An alternative is to employ symbolic anal-
ysis techniques generating possible test suites from program
crashes, and apply the test suites at the deployment site to

772

collect successful and failed execution traces [3] [4] . This,
however, requires precise specification of all library calls and
imposes difficulties on end users if program crashes can lead
to serious side-effects. Furthermore, symbolic analysis is
expensive and may not scale up to large programs such as
Firefox. Another way to collect complete successful and
failed execution traces is to deploy an instrumented version.
The instrumented version could monitor program execution
at the deployment site and send execution traces as well as
debugging information to developers. However, such moni-
toring, which considerably increases execution overheads, is
rarely adopted in deployed systems. Different from existing
techniques, our technique CrashLocator does not require test
runs and instrumentation, and it can locate crashing faults
based on crash stacks only.

3. PROPOSED TECHNIQUES FOR CRASH-
ING FAULT DIAGNOSIS

The diagnosis of crashing faults include those software
quality activities towards understanding, locating, and fixing
crashing faults. We summarize the possible activities of
diagnosing crashing faults in Figure 1.

Reproduce Crash

Dump Crash
Information

Locate Crashing
Faults

Bucket Crash

Figure 1: Activities of diagnosing crashing faults

The goal of our diagnosis tools is to locate crashing faults.
Towards this goal, there are a series of activities supporting
it. In this section, we propose a number of techniques to
support the crashing fault diagnosis in these activities.

Dump Crash Information: Dumping crash information
is the process of collecting essential information for the crash-
ing fault diagnosis. In the existing crash reporting systems,
one of the most useful information is crash stack. However,
BugRedux [10] showed that, reproducing crash based on the
crash stack may be difficult, while call sequence is the most
effective data for reproducing faults. To collect call sequence,
BugRedux simply instruments the entry of call sites and the
instrumentation overhead is from 1% to 50%, on average
17.4%. Besides, call sequence is also beneficial to locate
crashing faults directly. Towards the research direction, we
propose a technique to collect call sequence with less runtime
overhead.

We observe that the execution of some call sites is implied
by the execution of other call sites. For example, if the
successor call site of call site a on the control flow graph
(CFG) is unique, namely b, it is unnecessary to instrument
call site b because the occurrence of a in the trace implies
the execution of b. This unique derivation observation can
also be extended to the case where a has multiple successor
call sites. Therefore, it is sufficient to instrument a small
subset of the call sites to collect a partial call sequence, and
infer the missed call sites offline with an linear algorithm.
This auxiliary inference phase can shift a large portion of

A0

X

2]
1100 —— —
1111)
a4 <]
Software Instrumenter Ins;:;‘";;"::d
4
/s R —

Call Sequence Analyzer

C&,

Figure 2: A framework of collecting call sequence

Partial Call
Sequence

runtime overhead to static time. The overall process of our
technique to collect call sequence is shown in Figure 2.

Bucket crash: The existing crash reporting systems lever-
age heuristics to bucket crash. However, the existence of
misclassifying duplicate crash reports in these systems reduce
the effectiveness of effort prioritization and fault diagnosis.
Therefore, we propose a better crash bucketing approach
ReBucket based on call stack similarity. Crash stack in-
formation is used in our technique. The overall process of
ReBucket is shown in Figure 3.

Our call stack similarity measure is called Position De-
pendent Model (PDM), which is based on the insights that:
(1) More weight should be put into frames whose position is
closer to the top, since the frame that is blamed for the bug
is likely to occur near the top of the call stack; (2) The align-
ment offset between two matched functions in two similar
call stacks is likely to be small.

Call Stack
Similarity Measure
Using PDM

Hierarchical

Preprocessing Clustering

Learned
Parameters

Historical
Buckets

Figure 3: A framework of crash bucketing

Locate crashing faults: Due to the limited information
provided in existing crash reporting system, the conventional
automatic fault localization techniques may be directly appli-
cable in production software. Therefore, we propose a novel
technique CrashLocator for locating crashing faults at the
function level based crash stack only. The overall process of
CrashLocator is shown in Figure 4.

Different from the conventional fault localization tech-
niques, CrashLocator does not rely on the passing and testing
run. Instead, by using static analysis, it expands crash stack
into the approximated crash traces so that it can cover the
faulty functions that do not reside in crash stack. In this step,

773

Discriminative
Factors

Approximate
Crash Traces

RANK UNIT
1 function 31
2 function 54
3 function 12

Crash Reports with
Bucket

Ranking Suspicious Ranked List of
Functions Suspicious
Functions

Source Code Function Call Graph

Figure 4: A framework of locating crashing faults

function call graph information is used to expand stack trace,
while the control flow analysis and backward slicing are used
to prune irrelevant execution traces. Then, CrashLocator
computes the suspiciousness scores of all functions in the ap-
proximate crash traces, and returns a ranked list of suspicious
functions. The proposed suspiciousness score is composed
of discriminative factors which are based on our empirical
studies in Mozilla products as well as some prior studies [16]
[18]. It should be noted that, CrashLocator leverages the
bucketing information, and the discriminative factors are
calculated based on buckets of crash reports rather than a
single crash.

Reproduce crash: Reproducing crash is important to
understand and locate crashing faults. In this thesis, I do
not propose a new technique to reproduce crash. However, I
provide two possible extensions towards reproducing crashes.
First, when dumping crash information, our technique to
collect call sequence provides the fundamental data for crash
reproducing. The existing study [10] has shown its effec-
tiveness. Second, our crashing fault localization technique
CrashLocator is based on crash stack only and targeting at
finding faulty functions without reproducing crashes. To
understand the crashing faults further and locate the faults
in statement level, to reproduce crash is helpful. Although
reproducing the crash [10] based on symbolic analysis is
expensive and may not be effective. However, since the suspi-
cious faulty functions are provided, reproducing partial crash
stack from the faulty functions is less expensive and more
feasible.

4. EVALUATION

To evaluate the technique to collect call sequence, I in-
tend to conduct the empirical evaluations on the well-known
benchmarks, as well as some real crashing faults in open
source projects. I will measure both the runtime overhead
and space overhead caused by the new instrumentation ap-
proach. Besides, I will validate whether the call sequence can
be recovered from the partial call sequence theoretically and
empirically. The outcome of this technique can be further
served for other applications, such as crash reproducing and
crashing fault localization. In future, we will also evaluate
the usefulness of the technique.

To evaluate the proposed technique ReBucket [7], I con-
ducted an empirical evaluations in Microsoft products. We
implemented and applied our technique and some existing
techniques [8] [12] [14] in Microsoft products. Our evalua-

tion results showed that, our proposed technique achieves
better overall performance than the selected approaches. On
average, the F-measure achieved by our approach is about
0.88. Besides, a Microsoft product team has confirmed the
usefulness of 20 sampled buckets produced by our technique.

To evaluate the proposed technique CrashLocator [17] to lo-
cate crashing faults based on crash stack only , I collected 160
crashing faults in the three different Mozilla products, Firefox,
Thunderbird, and SeaMonkey. In our study, CrashLocator
can locate 50.6%, 63.7% and 67.5% of crashing faults by
examining only top 1, 5 and 10 functions. The evaluation
results show that our approach outperforms significantly the
conventional methods that only examine functions in crash
stack. In the future, we will evaluate CrashLocator on more
projects including industrial projects.

S. PROGRESS

In the early stage of the thesis, I have implemented two
techniques [7] [17] to assist the crashing fault diagnosis, based
on the crash reports in the existing crash reporting systems.
Both of the techniques are evaluated in the real systems,
either industrial products or open source products in a large
scale.

Currently, I am working on a lightweight instrumentation
technique to collect call sequences in production software to
assist the crashing fault diagnosis. In this thesis, I elaborated
the challenges in production software. Therefore, the ongoing
work should also satisfy the special demands on production
software. In current stage, I have implemented a prototype
of the new instrumentation technique and conducted a pre-
liminary study on the well-known benchmarks and some
crashing faults in open source projects. Later, I will validate
its usefulness in the production software.

In addition, I envisioned two possible extension towards
reproducing crashes, based on the my existing and ongoing
work. However, the feasibilities of the extensions are needed
to be validated in the future.

6. REFERENCES
[1] R. Abreu, P. Zoeteweij, and A. J. Van Gemund. On the

accuracy of spectrum-based fault localization. In
Testing: Academic and Industrial Conference Practice
and Research Techniques-MUTATION, 2007.
TAICPART-MUTATION 2007, pages 89-98. IEEE,
2007.

Apple. "technical note tn2123: Crashreporter”,
developer.apple.com/library /mac/#technotes/tn2004/
tn2123.html, 2010.

S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Directed test
generation for effective fault localization. In Proceedings
of the 19th international symposium on Software testing
and analysis, pages 49-60. ACM, 2010.

S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Practical
fault localization for dynamic web applications. In
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1, pages
265-274. ACM, 2010.

S. Artzi, S. Kim, and M. D. Ernst. Recrash: Making
software failures reproducible by preserving object

774

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

states. In ECOOP 2008-Object-Oriented Programming,
pages 542-565. Springer, 2008.

J. Bell, N. Sarda, and G. Kaiser. Chronicler:
Lightweight recording to reproduce field failures. In
Proceedings of the 2013 International Conference on
Software Engineering, ICSE 13, pages 362—-371,
Piscataway, NJ, USA, 2013. IEEE Press.

Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel.
Rebucket: A method for clustering duplicate crash
reports based on call stack similarity. In Proceedings of
the 2012 International Conference on Software
Engineering, pages 1084-1093. IEEE Press, 2012.

K. Glerum, K. Kinshumann, S. Greenberg, G. Aul,

V. Orgovan, G. Nichols, D. Grant, G. Loihle, and

G. Hunt. Debugging in the (very) large: Ten years of
implementation and experience. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, SOSP ’09, pages 103-116, New York, NY,
USA, 2009. ACM.

L. Jiang and Z. Su. Context-aware statistical
debugging: from bug predictors to faulty control flow
paths. In Proceedings of the twenty-second IEEE/ACM
international conference on Automated software
engineering, pages 184-193. ACM, 2007.

W. Jin and A. Orso. Bugredux: reproducing field
failures for in-house debugging. In Proceedings of the
2012 International Conference on Software Engineering,
pages 474-484. TEEE Press, 2012.

W. Jin and A. Orso. F3: Fault localization for field
failures. In Proceedings of the 2013 International
Symposium on Software Testing and Analysis, ISSTA
2013, pages 213—-223, New York, NY, USA, 2013. ACM.
S. Kim, T. Zimmermann, and N. Nagappan. Crash
graphs: An aggregated view of multiple crashes to
improve crash triage. In Dependable Systems &
Networks (DSN), 2011 IEEE/IFIP j1st International
Conference on, pages 486—493. IEEE, 2011.

B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. 1.
Jordan. Scalable statistical bug isolation. In ACM
SIGPLAN Notices, volume 40, pages 15-26. ACM,
2005.

N. Modani, R. Gupta, G. M. Lohman, T. F.
Syeda-Mahmood, and L. Mignet. Automatically
identifying known software problems. In /CDE
Workshops, pages 433—441. Citeseer, 2007.

Mozilla. "mozilla crash reports”,
http://crashstats.mozilla.com, 2012.

A. Schroter, N. Bettenburg, and R. Premraj. Do stack
traces help developers fix bugs? In Mining Software
Repositories (MSR), 2010 Tth IEEE Working
Conference on, pages 118-121. IEEE, 2010.

R. Wu, H. Zhang, S. C. Cheung, and S. Kim.
Crashlocator: Locating crashing faults based on crash
stacks. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis, 2014.

H. Zhang. An investigation of the relationships between
lines of code and defects. In ICSM 2009, pages 274-283.
IEEE, 2009.

