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ABSTRACT 
Many software defect prediction models have been built using 
historical defect data obtained by mining software repositories 
(MSR). Recent studies have discovered that data so collected 
contain noises because current defect collection practices are 
based on optional bug fix keywords or bug report links in change 
logs. Automatically collected defect data based on the change logs 
could include noises.  

This paper proposes approaches to deal with the noise in defect 
data. First, we measure the impact of noise on defect prediction 
models and provide guidelines for acceptable noise level. We 
measure noise resistant ability of two well-known defect 
prediction algorithms and find that in general, for large defect 
datasets, adding FP (false positive) or FN (false negative) noises 
alone does not lead to substantial performance differences. 
However, the prediction performance decreases significantly 
when the dataset contains 20%-35% of both FP and FN noises. 
Second, we propose a noise detection and elimination algorithm to 
address this problem. Our empirical study shows that our 
algorithm can identify noisy instances with reasonable accuracy. 
In addition, after eliminating the noises using our algorithm, 
defect prediction accuracy is improved. 

Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement–Restructuring, reverse engineering, and 
reengineering, D.2.8 [Software Engineering]: Metrics – Product 
metrics, K.6.3 [Management of Computing and Information 
Systems]: Software Management – Software maintenance 

General Terms 
Algorithms, Measurement, Experimentation 

Keywords 
Defect prediction, noise resistance, buggy changes, buggy files, 
data quality.  

1. INTRODUCTION 
Defect prediction is a very active area in software engineering 
research [7, 10, 11, 13, 18, 19, 33, 35]. Many effective new 
metrics and algorithms to predict defect-proneness have been 

proposed. When researchers evaluate their new algorithms or 
metrics, they often use defect information collected from the 
change logs in Software Configuration Management (SCM) 
systems and from the bug reports in bug tracking systems. 

Unfortunately, recent studies have found that extracted defect 
information from change logs and bug reports are noisy. For 
example, Aranda and Venolia et al. [1] manually inspected ten 
bug reports in Microsoft and interviewed developers related to the 
reports. They found lots of important information missing in bug 
reports. Bird et al. [4] also studied the quality of change logs and 
bug reports, and found that many change logs and bug reports 
were not linked. They also found that the noisy defect information 
could seriously affect the performance of a bug prediction 
algorithm. 
These surprising findings challenge the validity of all existing bug 
prediction algorithms by raising important questions: How could 
we deal with the noise in the defect data? Are existing defect 
prediction algorithms still useful if their prediction models are 
trained by noisy defect data? How much noise is acceptable for 
bug prediction algorithms? How could we detect and eliminate the 
noise? 

This paper addresses these questions. First, we propose a method, 
which intentionally adds false positive and negative information 
only in the training data to measure noise resistance of a given 
bug prediction algorithm. Using the proposed method, we 
measure noise resistance of two well-known bug prediction 
algorithms, change classification and buggy file prediction. We 
found that these two algorithms are relatively noise resistant. 
When there are enough buggy instances in the datasets, defect 
prediction performance (measured in terms of F-measure) does 
not decrease significantly with the increases of false positive or 
false negative noises. We also find that these algorithms are more 
resistant to false negative noises. However, the prediction 
performance decreases significantly when the dataset contains 
20%-35% of both FP and FN noises.  
Second, we propose an algorithm to detect and eliminate noises in 
the defect data to address the noisy data problem. We 
experimentally evaluate our algorithm and the results show that it 
can identify noisy instances with reasonable accuracy. In addition, 
after eliminating the noises using our algorithm, the defect 
prediction accuracy is improved.  

Overall, this paper makes the following contributions: 
• Noise resistance measuring technique: We propose a 

method to measure noise resistance of defect prediction 
models.  

• Empirical study of measuring noise resistance: We apply 
the resistance measuring method for two well-known 
prediction algorithms, and provide guidelines for acceptable 
noise level. 
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• Noise detection technique: We propose an accurate noise 
detection algorithm, which also improves defect prediction 
accuracy.  

In the remainder of the paper, we start by presenting the 
background on defect prediction algorithms in Section 2. In 
Section 3, we discuss the noisy defect data issue. We propose a 
noise resistance measuring method in Section 4 and apply it for 
change classification and buggy file prediction in Section 5. We 
present our noise detection algorithm in Section 6. Section 7 
discusses the threats to validity. We round off the paper with 
related work in Section 8 and conclusions in Section 9. 

2. BACKGROUND 
2.1 A General Defect Prediction Process 
Before measuring noise resistance of defect prediction algorithms, 
we describe a common defect prediction process as shown in 
Figure 1. Then we introduce two well-known defect prediction 
algorithms used in this paper. 
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Figure 1. A general defect prediction process 
Before designing a prediction model, we need to specify the 
prediction target. A prediction model can be used for predicting 
defect-proneness (buggy or clean) of different software entities, 
such as a component [18, 32], file [16, 19, 33] or a change [9, 11]. 
After deciding the prediction target, a general defect prediction 
process (Figure 1) can be as follows: 
Labeling: Defect data need to be collected for training a 
prediction model. This process typically involves extracting 
instances (data items) from software archives and labeling them as 
TRUE (buggy) or FALSE (clean). However, some recent studies 
have discovered that data collected by mining software 
repositories often contain noise. Noisy data threaten the validity of 
prediction models. We will describe this issue in Section 3. 
Extracting features and creating training corpus: This step 
extracts features for predicting the labels of instances. Common 
features for defect prediction are complexity metrics, keywords, 
changes, and structural dependencies. By combining labels and 
features of instances, we can create a training corpus to be used by 
a machine learner to construct a prediction model.  

Building prediction models: Using a training corpus, general 
machine learners such as Support Vector Machines (SVM) or 
Bayes Net can be used to build a prediction model. The model can 
then take a new instance and predict its label, i.e. TRUE or 
FALSE.  

Evaluation: To evaluate a prediction model, we need a testing 
data set besides a training set. We predict the labels of instances in 
the testing set and evaluate the prediction model by comparing the 
prediction and real labels. To separate the training and testing sets, 
10-fold cross-validation is widely used. 

1 2 3 4 5 6 7 8 9 10

testing
set training set  

Figure 2. 10-fold cross-validation 
In 10-fold cross-validation, the data is divided equally into 10 
folds as shown in Figure 2. Then the instances in each fold are in 
turn used as a testing set and the remaining nine folds are used to 
train the model. For example, in the first iteration, instances in 
fold2 to fold10 are used as a training set, and fold1 as a testing set.  

There are four possible outcomes from a prediction model: 
classifying a buggy instance as buggy (

€ 

nb→b ), classifying a buggy 
instance as clean (

€ 

nb→c ), classifying a clean instance as clean 
(

€ 

nc→c ), and classifying a clean instance as buggy (

€ 

nc→b ). The 
recall, precision, and F-measures are widely used to evaluate 
prediction results [27, 31]. We use these measures to evaluate 
prediction models as follows: 
• Precision (buggy) = 

€ 

nb→b

nb→b + nc→b

 

This is the number of correct classifications of the type 
(

€ 

nb→b ) over the total number of predicted buggy instances. 
• Recall (buggy) = 

€ 

nb→b

nb→b + nb→c

 

This is the number of correct classifications of the type 
(

€ 

nb→b ) over the total number of actual buggy instances. 
• F-measure (buggy) = 

€ 

2* P(b) * R(b)
P(b) + R(b)

 

This is a composite measure of precision and recall. We use 
the F1 metric that weights recall and precision equally [27]. 

2.2 Software Defect Prediction Algorithms 
In this section, we describe two well-known defect prediction 
models used to measure noise resistance.  

2.2.1 Predicting Buggy Changes 
Change Classification (CC) learns buggy change patterns from 
history, and predicts if a new change introduces bugs or not 
[9,11]. 

File at
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File at
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File at
Rev 4

File at
Rev 
n-1

File at
Rev n

File at
Rev n

+1
......

Change log (Rev n)
"Fixed issue #355"

Bug introducing change Fix change ?  
Figure 3. Change history with buggy and fix changes 

Suppose we have a change history of a file as shown in Figure 3. 
After learning from buggy and clean change patterns from 
revision 1 to revision n, CC predicts if the change in revision n+1 
introduces bugs. 

To learn from history, CC extracts features from each change. To 
label changes as buggy or clean changes, first we need to extract 
changes from project history. Then we identify fix changes using 
change logs. To extract change history, we use Kenyon [3], a 
system that extracts source code change histories from SCM 
systems such as CVS and Subversion. Kenyon automatically 
checks out the source code of each revision and extracts change 
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information such as the change log, author, change date, source 
code, and change deltas.  

Once a commit has been determined to contain a fix, it is possible 
to trace backward in the revision history to determine when the 
fixed erroneous code is introduced in the system. We define that 
as a bug-introducing change. The bug-introducing change 
identification algorithms proposed by Śliwerski et al. [23] and 
Kim et al. [11] are used. 

A file change involves two source code revisions (an old revision 
and a new revision) and a change delta that records the added 
code (added delta) and the deleted code (deleted delta) between 
the two revisions. A file change has associated metadata, 
including the change log, author, and commit date. By mining 
change histories, we can derive features such as co-change counts 
to indicate how many files are changed together in a commit, the 
number of authors of a file, and the previous change count of a 
file. Every term in the source code, change delta, and change log 
texts is used as features. Detailed feature extraction methods of 
CC can be found in [11]. 

2.2.2 Predicting Buggy Files 
Another common defect prediction model is identifying buggy 
files in advance. It is widely believed that some internal properties 
of software (e.g., metrics) have relationships with external 
properties (e.g., defects). In recent years, many defect prediction 
models based on software metrics have been proposed (e.g., [13, 
16, 18, 19, 33]). These prediction models identify code features 
(expressed as measurement data), learn a classification model 
from historical defect data, and use the constructed model to 
predict defect-proneness of a new program module. 

Many code features can be extracted from software projects to 
predict defective files. These features include complexity metrics 
(such as lines of code, cyclomatic complexity, number of classes, 
etc.), process metrics (such as the number of lines of code changes, 
the number of file changes, etc.) and resource metrics (such as 
developer information, etc). All these metrics, or a combination of 
these metrics, can be used to build effective software defect 
prediction models. 

3. NOISES IN DEFECT DATA 
Both prediction algorithms described in Section 2 require labels 
(buggy or clean) to build and evaluate models. In this section, we 
discuss typical techniques to identify labels and the noise in the 
labels. 

To label a file/change as buggy or clean, many researchers mine 
the bug database and version achieves for open source systems. 
Two approaches are widely used: searching for keywords such as 
"Fixed" or "Bug" [14] and searching for references to bug reports 
like “#42233” [23] . We use both techniques in our experiments. 
Chen et al. [5] studied open source change log quality. They 
checked the correctness of each change log and found almost all 
logs were correct.  
Some open source projects have strong guidelines for writing their 
change logs. For example, 100% of Columba’s change logs used 
in our experiment have a tag such as ‘[bug]’, ‘[intern]’, ‘[feature]’, 
and ‘[ui]’. Usually, Eclipse developers leave relevant bug report 
IDs in their change logs. 

However, some recent studies (such as those reported by Bird et al. 
[4]) discovered that data collected via mining software 

repositories (MSR) often contain noise. They found that the 
number of linked bugs (bugs whose change logs and bug reports 
are linked) does not match the number of total fixed bugs (the 
ratio could be even lower than 50%), suggesting a high percentage 
of false negatives in the defect dataset. This is because developers 
often do not write specific keywords or leave links for fix 
revisions. It is also possible that developers make mistakes when 
they write keywords or links in the change logs. For this reason, 
automatically collected defect data based on these keywords or 
links are inevitably noisy. Recent studies have also found that 
noisy data (in training and testing sets) affect performance of 
prediction models [4].  

We also performed a replication study of Bird et al.’s experiments. 
Our results confirm their findings about noisy defect data. For 
example, for the Eclipse SWT component, there are 32% unlinked 
bugs (bugs that do not reflected in CVS logs) in Eclipse 3.0 and 
21% unlinked bugs in Eclipse 3.1. The existence of the unlinked 
bugs indicates that the defect data collected via MSR is noisy. We 
also noticed that the noise level decreased in Eclipse 3.4, where 
92.27% SWT bugs are recorded in CVS logs. In this paper, we 
measure the effect of noise on two defect prediction models 
described in Section 2, and propose an algorithm to detect the 
noise in Section 6.  

4. EXPERIMENTAL SETUP 

4.1 Research Questions 
Our experiments are designed to address the following research 
questions: 
RQ1: How resistant a defect prediction model is to false negative 
(FN) buggy data? 

RQ2: How resistant a defect prediction model is to false positive 
(FP) buggy data? 

RQ3: How resistant a defect prediction model is to both false 
negative (FN) and false positive (FP) buggy data? 

As Bird et al. [4] found out, developers often forget to leave 
explicit messages or links to indicate buggy changes. Since most 
automatic buggy change/file identifications are based on special 
keywords and links [11, 16, 28, 33, 36] in the change logs, this 
will lead to false negatives (missing some buggy changes) in the 
automatically identified data. RQ1 measures predictor resistance 
for this case. 

On the other hand, it is possible that developers label a change/file 
as buggy by leaving special keywords and bug report links, 
together with some non bug-fix changes in one commit. This 
behavior leads to false positives (identifying non-buggy 
changes/files as buggy). RQ2 measures resistance of defect 
prediction models to false positives in the training data set. 

Finally, RQ3 measures the noise resistant ability of defect 
prediction models when data has both false positives and false 
negatives.  

4.2 Making Noisy Data 
To address the research questions, we first need a golden set, 
which contains no FPs and FNs. In addition, we need noisy data 
sets. However, it is very hard to get a golden set. In our approach, 
we carefully select high quality datasets and assume them the 
golden sets. Then, to create noise sets, we add FPs and FNs 
intentionally into the golden sets. To add FPs and FNs, we 
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randomly selects instances in a golden set and artificially change 
their labels from buggy to clean or from clean to buggy, inspired 
by experiments in [4]. 

testing setoriginal training set

X X X X X X X X X X X X
X

X

X: buggy labelled 
instance

Biased training set: false negative instances

X X X X X

1

Adding 
buggy labels

2

Removing 
buggy labels

Biased training set: false positive instances

X X X X X X X X X XX
XX X

X X X XXX X

 
Figure 4. Creating biased training set 

To make FN data sets (for RQ1), we randomly select n% buggy 
labeled instances and change their labels to clean, as shown in 
Figure 4 (1). Similarly, to make FP data sets (for RQ2), we select 
n% of clean labeled instances and change their labels to buggy, 
which adds false buggy changes, as shown in Figure 4 (2). For the 
FN and FP data sets (for RQ3), we select random n% of instances, 
and change their labels. For example, if a clean-labeled instance is 
selected, we change its label to buggy. If a buggy instance is 
selected, we change its label to clean.  

It is very important to note that we add noise only in the training 
set, not in the testing set. For testing, we use the original golden 
set. In this way, we can measure the accuracy of a defect 
prediction model, which is trained from noisy data sets, to predict 
buggy/clean changes in the golden set.  

In this paper, we use the 10-fold cross validation described in 
Section 2. First, we group 9 folds to be used as a training set. 
Then, we add noise only in the training set and leave the testing 
set unchanged.   
For the machine learner, we use the Bayes Net classifier (the 
Weka implementation [26]). Bayesian networks have good 
performance when dealing with a large number of variables with 
much variance in values [27]. We also compare performances of 
other machine learners in Section 5.3.2. 

4.3 Dummy Predictor 
An effective defect prediction model should outperform at least 
random guessing – guessing a change/file as buggy or clean 
purely at random. We call a predictor based on random guessing a 
dummy predictor. Since there are only two labels, buggy and 
clean changes, the dummy predictor could also achieve certain 
prediction accuracy. For example, if there are 30% buggy changes 
in a project, by predicting all changes as buggy, the buggy recall 
would be 1 and the precision would be 0.3. It is also possible that 
the dummy predictor randomly predicts a change as buggy or 
clean with 0.5 probability. In this case, the buggy recall would be 
0.5, but still the precision is 0.3. 

We use the F-measure of the dummy predictor as a reference line 
when measuring the noise resistance of defect prediction models. 
We compute the dummy F-measure assuming the dummy 

predictor randomly predicts 50% as buggy and 50% as clean. For 
example, for a project with 30% buggy changes, the dummy 
buggy F-measure is 0.375 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

×
×

30.05.0
30.05.02 . 

5. NOISE RESISTANCE 
This section reports our experiments on the impact of noise on 
two defect prediction algorithms and discusses the results. 
 

5.1 Noise Resistance of Change Classification 
5.1.1 Subject Programs 
We use Columba, Eclipse JDT.Core and Scarab as our subjects 
for this experiment (Table 1), as these projects have high quality 
change logs and links between changes logs and bug reports. For 
the first two projects, we adopt the exact datasets used in [11], 
which were also used by other researchers [2, 21]. We assume 
these datasets as golden sets and use them to measure noise 
resistance. 

5.1.2 Original Accuracy 
First, we build a CC prediction model using the original training 
set and measure the performance of the model using a testing set. 
Figure 5 shows the buggy recall, prediction and F-measure. 
Overall, the accuracy results for the first two projects are 
comparable to those reported in [11] (the small variations in 
results coming from the use of Bayes Net instead of SVM and the 
randomness in the 10-fold cross-validation.) For Columba, the 
buggy precision and recall are around 0.5 to 0.55. For Eclipse, the 
buggy recall is 0.88, and precision is 0.48. We notice that the 
precision for Eclipse reported in [11] is 0.61, which is higher than 
our precision, 0.48. However, our recall is 0.88, which is much 
higher than the recall 0.61 reported in [11]. This happens due to 
the recall-precision tradeoff. To address this issue, we use F-
measure [26] to measure the noise resistance of CC in this paper. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Buggy Precision

Buggy Recall

Buggy F-measure

Scarab

Columba

Eclipse

 
Figure 5. Defect prediction using the original training set 

Table 1. Analyzed subject programs for predicting buggy changes 

Project Revisions Period # of clean 
instances  

# of buggy 
instances 

% of buggy 
instances 

# of features 

Columba 500-1000 05/2003-09/2003 1,270 530 29.4 17,411 
Eclipse 500-750 10/2001-11/2001 592 67 10.1 16,192 
Scarab 500-1000  06/2001-08/2001 724 366 50.6 5,710 
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5.1.3 FN Resistance (RQ1) 
In this section, we measure the resistance of CC for false negative 
(FN) training sets. To add FNs, we randomly select buggy 
instances in the training set and label them as clean as shown in 
Figure 4 (1). In this way, we increase the rate of FN by changing 
buggy labels to clean. For example, suppose we have 100 buggy 
instances in a training set. Changing labels of 10 buggy instances 
to clean will add 10% FN. 

Figure 6 (a) shows buggy F-measure results for Columba, Eclipse 
and Scarab with various FN training sets. The x-axis indicates the 
FN rates. The dummy F-measures described in Section 4.3 are 
also shown in the Figures as the reference lines.  
For Columba, the buggy F-measure shows strong resistance 
against the FN training sets. The F-measure values are relatively 
stable. When the noises reach 60%, the F-measure just drops 0.05. 
The same can be observed for Scarab, the buggy F-measure is not 
affected by FN noises significantly. After 20% false negatives are 
injected into the training set, the F-measure is not changed. When 
the noises reach 60%, the F-measure only drops less than 0.05.  

For Eclipse, the buggy F-measure is just slightly affected by the 
FN training sets too. After adding 40% FN noises to the training 
set, the F-measure drops from 0.62 to 0.55. When the noises reach 
60%, the F-measure still remains at 0.50.  

A possible explanation of these results is that the features 
characterizing bugs are often common across the buggy changes. 
Therefore losing some instances in the training set does not lead 
to significant performance decrease.  

5.1.4 FP Resistance (RQ2)  
We also observe CC F-measures using FP training sets. We add 
FPs into the training sets as described in Figure 4 (2) and then 

perform change classifications. The results are shown in Figure 6 
(b).  

For Columba and Scarab, the buggy F-measures are not 
significantly affected by the false positives. For Eclipse, buggy F-
measures are affected by the FN training sets. After adding 20% 
FP noises to the training set, the F-measure drops from 0.6 to 0.4. 
After having more than 50% FP noises, the F-measure is close to 
that of the dummy predictor.  

A possible explanation of the sensitivity of the Eclipse F-
measures is the small number of buggy changes in the dataset. 
There are only 67 buggy changes as shown in Table 1. After 
adding many FPs, the features that characterize bugs become less 
obvious for classifiers to learn. On the other hand, Columba and 
Scarab all have more than 300 buggy changes to learn from, the 
features characterizing bugs can be still identified and prediction 
performance is still kept. 

5.1.5 FN and FP Resistance (RQ3) 
We also examine the prediction performance when the training 
sets contain both FP and FN noises. As shown in Figure 6 (c), the 
trend of buggy F-measures for all projects decline when the noise 
rate increases.  

For Columba and Scarab, their F-measures only decrease by 0.1-
0.15 when noise level reaches 60%. Interestingly, the F-measure 
of Eclipse decreases much faster than that of Columba and Scarab. 
Note that, Columba and Scarab have many buggy/clean instances 
and switching some labels dose not hurt the prediction too much. 
However, the F-measure of Eclipse significantly drops when the 
level of FP and FN noise increases. After the noises reach 40%, 
the Eclipse’s F-measures are almost the same as the dummy F-
measures.  

Figure 6. The impact of noises on predicting 
buggy changes (a). F-measure for FN training 
sets; (b). F-measure for FP training sets; (c). F-
measure for FN&FP training sets. The Bayes 
Net machine learner is used. For Columba and 
Scarab, the F-measures are not affected by the 
noises significantly. For Eclipse, the F-measure 
drops significantly when the noise rate 
increases. 
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5.2 Buggy File Prediction 
5.2.1 Subject Programs 
To obtain the “golden set” for building prediction models for 
buggy-files, we use the SWT and Debug projects in Eclipse 3.4. 
We collected the defect data by mining the Eclipse Bugzilla and 
CVS repositories. We find that both projects have a high 
percentage of linked bugs (bugs whose changes logs and bug 
reports are linked). For SWT, 92.27% bugs reported in Bugzilla 
are linked to changes. For Debug, 95.92% bugs are linked. 
Therefore, we use these two datasets as the golden sets.  

Table 2 summarizes the datasets used in this study. The SWT 
dataset contains 1,485 Java source files, among which 43.9% files 
are defective. The Debug dataset contains 1,065 files, among 
which 24.69% are defective. We have also collected the following 
metrics for each file in the projects. These metrics capture 
different aspects of a file and are used as features for constructing 
our defect prediction model: 

• Complexity metrics: including LOC (lines of code), average 
cyclomatic complexity measure, maximum cyclomatic 
complexity measure. 

• Object-oriented metrics: including the WMC, CBO, NOC, 
DIT, LCOM, RFC metrics that are proposed by Chidamber 
and Kemerer [6]. 

• Change metrics: including the number of added and deleted 
lines of code since the last major revision, the number of 
times the file is changed. 

• Developer metric: the number of developers who changed 
the file. 

Following the method described in Section 4.2, we intentionally 
make the dataset noisy by randomly selecting a given percentage 
of instances and changing their class labels (buggy or clean), thus 
artificially creating false positives and false negatives. We again 
use 10-fold cross validation to evaluate the prediction results. We 
first randomly partition the whole dataset into 10 folds. We use 9 
folds as a training set and inject noise into them, and then use the 
remaining unchanged 1 fold as the testing set. The Bayes Net 
classifier is used to construct the prediction model. 

Table 2. The dataset used for predicting buggy files 
Project LOC #programs 

(src files) 
#defects  #defective 

programs 
% of linked 
bugs 

SWT 386K 1485 556 653(43.97%) 92.27% 
Debug 77K 1065 294 263(24.69%) 95.92% 

5.2.2 FN Resistance (RQ1) 
Figure 7(a) shows how FN (false negative) training sets affect 
prediction performance. Clearly, the defect prediction model has 
strong resistance against the FN training sets. For SWT, the buggy 
f-measure using the original dataset is 0.79. With the increases of 
noises, the prediction results are still very stable (with f-measures 
around 0.78), even when the false negative rate reaches 60%. 
Similar results are found for the Debug project, which exhibits 
stable performance until the FN rate reaches 50%. Although some 
buggy instances are marked as clean, the remaining buggy 
instances can capture the program features and can be still used 
for training prediction models effectively.  

5.2.3 FP Resistance (RQ2) 
Figure 7(b) shows how FP (false positive) training sets affect 
prediction performance. Similarly, the defect prediction model has 

Figure 7. The impact of noises on predicting 
buggy files (a). F-measure for FN training sets; 
(b). F-measure for FP training sets; (c). F-
measure for FN&FP training sets. The Bayes 
Net machine learner is used. The F-measures of 
the Debug and SWT projects are not affected by 
the FN or FP noises significantly. However, 
when FN&FP noises reach certain level, the F-
measures drop significantly. 
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resistance against the FP training sets. The prediction results are 
very stable. For SWT, the F-measure values are all around 0.78 
even the FP rate is 60%. For Debug, the F-measures are about 
0.50 until the FP rate reaches 50%. The data noise introduced by 
false positives does not decrease the prediction accuracy 
significantly. 

5.2.4 FN and FP Resistance (RQ3) 
A training set may contain both false positives and false negatives. 
Figure 7(c) shows how FN and FP noises affect prediction 
accuracy. For SWT, once the FN and FP noise rate reaches 40%, 
prediction accuracy starts decreasing quickly. For Debug, 
prediction accuracy drops after the FN and FP noise rate exceeds 
20%. These results show that FN and FP noises together have 
larger impact on defect prediction. 

5.3 Discussions 
5.3.1 Acceptable Noise Rate 
Many bug prediction approaches use software history to build 
prediction models. It is often very difficult to collect perfect 
historical datasets that have no FPs and FNs. How much noise is 
acceptable for prediction approaches? 

Our experiments show that CC and the buggy file prediction yield 
reasonably stable accuracy at the presence of noises, when the 
Bayes Net learner is used. When the number of buggy instances is 
large enough, increasing FP or FN noises does not affect 
prediction performance significantly. For datasets with both FP 
and FN noises, the prediction performance decreases when the 
noises increase. When the number of buggy instances in a dataset 
is small, the prediction performance will be affected by noises 
significantly. 
In defect prediction practices, FNs are more common as some 
defects recorded in bug tracking systems are not linked to 
CVS/SVN logs [4]. FPs happen when developers leave a message 
saying he fixed a bug, but he actually did not. Chen et al. [5] 
studied the correctness of open source change logs, and they find 
that when developers leave a message indicating fixing of bugs, it 
is likely a real fix. Our experimental results show that noises in 
FN or FP alone do not affect prediction performance significantly. 
Also, up to 20%-35% of FP and FN noises (together) usually do 
not affect the performance significantly either.  

Obviously, our results may not be generalizable to all prediction 
models, but at least these can serve as guidelines for CC and the 
buggy file prediction users. We suggest that before using these 
predictors, users can sample their data and manually inspect them 
to measure FP and FN rates. Based on the rates, they can decide if 
their defect data is applicable for these predictors.  

5.3.2 Noise Resistances of Different Machine 
Learners 
In previous sections, we obtained our results using the Bayes Net 
machine learner. In this section, we use Naïve Bayes, Support 
Vector Machines (SVM) and Bagging learners [26, 27] to repeat 
the experiments and observe the impact of data noises on 
prediction accuracy.  

Figure 8 shows the noise resistance ability of the four machine 
learners under different False Negative rates. Similar to Bayes Net, 
the Naïve Bayes learner also has strong noise resistance ability 
when predicting buggy files. The F-measures do not change 
significantly when FN rates are increasing. All Bayesian 

classifiers are based on the Bayer’s rule. The classifier is 
interested in the most probable hypothesis. Therefore, even if 
there is a certain amount of noise in the defect dataset, which 
could affect calculation of probability for some hypothesis, the 
Bayesian classifiers can still make correct classifications when the 
most probable hypothesis is preserved. 
The SVM learner performs poorly with noisy data – F-measures 
decrease quickly when FNs increase, until FN rate reaches 50%. 
SVM performs classification by constructing an N-dimensional 
hyperplane that optimally separates the data into two categories. 
The noise in the data could affect the construction of the 
hyperplane considerably. Therefore more noise could lead to more 
bias in classification. 

The Bagging (Bootstrap Aggregating) classifier is a machine 
learning algorithm that ensembles meta-algorithms to build 
models. In this experiment, we use the Multilayer Perceptron 
algorithm as the meta-algorithm [26]. The Bagging classifier 
separates a training set into several new training sets by random 
sampling, and builds models based on the new training sets. The 
final classification result is obtained by the voting of each model. 
Figure 8 shows that Bagging can improve the original prediction 
performance, and resist a certain amount of noises. However, 
when the noise level exceeds 40%, the probability of each model 
making a wrong classification is increasing, causing the quick 
drop of the performance. 
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Figure 8. SWT defect prediction results of different machine 

learners (F-measures for FN training set). 

6. HANDLING NOISES IN DEFECT DATA 
This section proposes a noise detection algorithm and presents its 
evaluation.  

6.1 Identifying Noisy Instances 
We investigate possible methods for identifying noisy instances in 
defect datasets. If we can detect noises in advance, it is possible to 
eliminate them and make the data more suitable for predictors. 

We propose a novel noise detection algorithm, called Closest List 
Noise Identification (CLNI). The pseudo-code of the algorithm is 
given in Figure 9.  
The CLNI algorithm works as follows. In each iteration j, for each 
instance Insti, its closest instances are listed; we call it Listi. In 
Listi, the instances are sorted in ascending order according to their 
Euclidean Distance to Insti. The percentage of top N instances that 
have different class values from Insti is recorded as θ. If θ is more 
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than or equal to a given threshold δ, then Insti  is highly probable 
to be a noisy instance and will be included in noise set Aj. The 
above process is repeated until the similarity between Aj and Aj-1 is 
over ε. Aj will be returned as the identified noise set. Empirical 
study found that when N is 5, δ is 0.6 and ε is 0.99, this algorithm 
performs the best. 

CLNI Algorithm: 
for each iteration j 

for each instance Insti 
for each instance Instk 

 if(Instk ∈ Aj-1) 
     continue; 

else 
     add EuclideanDistance(Insti, Instk) to Listi ; 
 end 
            end 
            calculate percentage of top N instances in Listi 
 whose label is different from Insti as θ; 
            if  θ ≥ δ 
  Aj = Aj ∪ Insti; 
            end  
        end 
        if |Aj∩Aj-1| / Max(|Aj|, |Aj-1|)≥ ε  
            break; 
        end 
end 
return Aj 

Figure 9. The pseudo-code of the CLNI algorithm 
The high-level idea of CLNI can be illustrated as in Figure 10. 
The blue points represent clean instances and the white points 
represent buggy instances. When checking if an instance I is 
noisy, CLNI first lists all instances that are close to I (the points 
included in the circle). CLNI then calculates the ratio of instances 
in the list that have a class label different from that of I (the 
number of white points over the total number of points in the 
circle). If the ratio reaches a specific threshold δ, we consider 
instance I to have a high probability to be a noisy instance. 

 
Figure 10. An illustration of the CLNI algorithm 

6.2 Evaluation 
We evaluate CLNI using data from the Eclipse 3.4 SWT and 
Debug projects as described in Section 5.2. These two datasets are 
considered as the golden sets as most of their bugs are linked bugs. 
Following the method described in Section 4.2, we create the 
noisy datasets for these two projects by selecting random n% of 
instances and artificially changing their labels (from buggy to 
clean and from clean to buggy). We then apply the CLNI 

algorithm to detect noisy instances that we have just injected. We 
use Precision, Recall and F-measures to evaluate the performance 
in identifying the noisy instances. 

Table 3 shows the results when the noise rate is 20%. The 
Precisions are above 0.6, Recalls are above 0.83 and F-measures 
are above 0.71. These promising results confirm that the proposed 
CLNI algorithm is capable of identifying noisy instances.  

Table 3.The performance of CLNI in identifying noisy 
instances 

 Precision Recall F-measure 
Debug 0.681 0.871 0.764 
SWT 0.624 0.830 0.712 

Figure 11 also shows the performance of CLNI under different 
noise levels for the SWT component. When the noise rate is 
below 25%, F-measures increase with the increase of the noise 
rates. When the noise rate is above 35%, CLNI will have bias 
toward incorrect instances, causing F-measures to decrease.  
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Figure 11. Performance of CLNI with different noise rates 

After identifying the noises in the noisy Eclipse 3.4 SWT and 
Debug datasets using CLNI, we eliminate these noises by flipping 
their labels. We then evaluate if the noise-removed training set 
improves prediction accuracy.  
The results for the SWT component before and after removing FN 
and FP noises are shown in Table 4. In general, after removing the 
noises, the prediction performance (F-measure) improves for all 
learners, especially for those that do not have strong noise 
resistance ability. For example, for the SVM learner, when 30% 
FN&FP noises were injected into the SWT dataset the F-measure 
was 0.339. After identifying and removing the noises, the F-
measure jumped to 0.706. These results confirm that the proposed 
CLNI algorithm can improve defect prediction performance for 
noisy datasets. 

Table 4.The defect prediction performance (F-measure) 
after identifying and removing noisy instances (SWT) 
Remove 
Noises ? 

Noise 
Rate  

Bayes 
Net 

Naïve 
Bayes SVM Bagging 

No 15% 0.781 0.305 0.594 0.841 
30% 0.777 0.308 0.339 0.781 
45% 0.249 0.374 0.353 0.350 

Yes 
 

15% 0.793 0.429 0.797 0.838 
30% 0.802 0.364 0.706 0.803 
45% 0.762 0.418 0.235 0.505 

  

I   
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7. THREATS TO VALIDITY 
We note some threats to the validity of this work. 

• All datasets used in our experiments are collected from open 
source projects. The types of noises introduced by open 
source developers may be different from those introduced by 
employees in a well-managed software organization. We 
need to evaluate if commercial projects also exhibit similar 
noise resistance behavior in defect prediction. This remains 
as future work. 

• The golden set used in this paper may not be perfect. For 
example, there are still a few percentages of bugs that are not 
linked to the CVS logs. Even though some files are annotated 
with bug IDs, they may not be the files that actually contain 
the bugs. It is also possible that a few bugs may not even be 
recorded in the bug tracking system. Our results may be 
under threat if the golden sets contain a large number of FPs 
and FNs. 

• The noisy data simulations used in our experiment may not 
reflect the actual noise patterns in practice. In our 
experiments, instances to be included as FP/FN training sets 
are randomly selected. It is possible that in practice, 
occurrences of some noises actually follow certain patterns; 
for example, files developed by a poorly managed team are 
more likely to contain noisy defect data.  

8. RELATED WORK 

8.1 The Data Quality Problem 
Real-world data are often noisy, which may affect interpretations 
and models derived from the data. The data quality problem is 
well recognized in the data mining area. Some studies show that 
errors in a large dataset are common and field error rates are 
typically around 5% or more [29, 12]. Many existing learning 
algorithms have integrated various approaches to handle noises. 
For example, the well-known Decision Tree algorithm uses tree-
pruning methods to avoid over fitting problems introduced by 
noises in training data [20]. Zhu and Wu [30] descried a 
quantitative study of the impact of noisy data on classification 
accuracies using the UCI machine learning datasets. They found 
that although some machine learning algorithms have been 
designed to accommodate noises, noises in class labels can still 
lower classification accuracies. They also suggest preprocessing 
methods (such as eliminating instances containing class noise) to 
enhance classification accuracy. 

The data quality problem has also been observed by some 
software engineering researchers. For example, Mockus [15] 
noted that in many realistic scenarios the data quality is low (e.g., 
some change data could be missing), which could affect the 
outcome of an empirical study. He proposed to use multiple 
imputation methods to mitigate the effects of missing values. 
Myrtveit et al. [17] and Strike et al. [22] also noticed the problem 
of missing and incomplete data in software effort estimation. In 
this paper, we address the problem of noisy data in software 
defect prediction. 

8.2 The Quality of Software Defect Data 
Research on software defect prediction has received much 
attention in recent years, as the ability to predict defect-proneness 
of a software module is important for software quality 
improvement and project management. Many defect prediction 

models have been proposed (e.g., [7, 10, 11, 13, 16, 17, 35]). 
However, almost all defect prediction models do not take noise in 
the data into consideration. 

As described in Section 3, many current defect prediction models 
are built based on data collected by mining software repositories 
(MSR). Bird et al. [4] reported that the data collected in this 
manner could introduce a large amount of noises. Although they 
have noticed the noisy defect data problem, they did not 
empirically measure the impact of different noise levels on defect 
prediction accuracy or try to eliminate noise. The noisy data 
problem does not pertain to data collected by MSR only. It may 
occur in industrial metric projects as well. For example, 
Khoshgoftaar and Seliya [8] performed an extensive study on 
NASA MDP datasets. They observed low prediction performance 
and suggested that “instead of focusing on searching for another 
classification technique for improving prediction accuracy, the 
quality of the software measurement data should be addressed”. 
They also proposed a noise elimination technique based on the k-
means algorithm [25]. They detected outliers in the data and 
treated them as noisy instances. The limitation of their method is 
that mislabeled instances are often not outliers. In this paper, we 
present one of the first empirical studies of the impact of noisy 
data on defect prediction. We also propose a novel noise detection 
algorithm, which can identify mislabeled instances with good 
accuracy. 

9. CONCLUSIONS 
Defect data collected based on specific bug fix keywords or bug 
report links in change logs are commonly used to build defect 
prediction models and to evaluate the models. Since leaving 
specific keywords or bug report links in change logs is optional, 
automatically collected defect data from change logs inevitably 
includes noise. Recent studies show that noise in defect data is not 
negligible, and this noise affects prediction performance [4]. 
However, the issue of dealing with noisy data has not been 
addressed adequately. 

In this paper, we have introduced a method to measure noise 
resistance in software defect prediction (for predicting buggy files 
and buggy changes). By applying the method to two well-known 
defect prediction models, we found that in general, noises in the 
defect data do not affect defect prediction performance in a 
significant manner. However, the prediction performance 
decreases significantly when the dataset contains 20%-35% of 
both FPs and FNs. 

We have also proposed a new method called CLNI for identifying 
noisy instances in defect data. Our experiment results show that 
CLNI can effectively identify noises with reasonable accuracy. 
The noise-eliminated training sets produced by CLNI can improve 
the defect prediction performance, especially for the machine 
learners that do not have strong noise resistant ability. 

In future, we will further investigate techniques for improving 
defect prediction accuracy under noisy environment. We will also 
explore if the results obtained in this paper are applicable to 
industrial projects.  

All data used in our experiments are available at:  
http://code.google.com/p/hunkim/wiki/HandlingNoise 
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