
CrashLocator: Locating Crashing Faults Based on Crash
Stacks

Rongxin Wu§, Hongyu Zhang†, Shing-Chi Cheung§, and Sunghun Kim§
§

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology, Hong Kong, China

{wurongxin, scc, hunkim}@cse.ust.hk

†
Microsoft Research

Beijing 100080, China

honzhang@microsoft.com

ABSTRACT

Software crash is common. When a crash occurs, software devel-
opers can receive a report upon user permission. A crash report
typically includes a call stack at the time of crash. An important
step of debugging a crash is to identify faulty functions, which is
often a tedious and labor-intensive task. In this paper, we propose
CrashLocator, a method to locate faulty functions using the crash
stack information in crash reports. It deduces possible crash traces
(the failing execution traces that lead to crash) by expanding the
crash stack with functions in static call graph. It then calculates
the suspiciousness of each function in the approximate crash trac-
es. The functions are then ranked by their suspiciousness scores
and are recommended to developers for further investigation. We
evaluate our approach using real-world Mozilla crash data. The
results show that our approach is effective: we can locate 50.6%,
63.7% and 67.5% of crashing faults by examining top 1, 5 and 10
functions recommended by CrashLocator, respectively. Our ap-
proach outperforms the conventional stack-only methods signifi-
cantly.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging-

Debugging Aids.

General Terms

Measurement, Reliability

Keywords

Crashing fault localization, crash stack, software crash, statistical
debugging, software analytics.

1. INTRODUCTION
Software crashes are severe manifestations of software faults.
Crashes are often required to be fixed with a high priority. Recent-
ly, many crash reporting systems such as Windows Error Report-
ing [14], Apple Crash Reporter [2], and Mozilla Crash Reporter
[25] have been proposed and deployed. These systems automati-
cally collect relevant information (such as the crash stack and

crashed modules) at the time of crash, cluster similar crash reports
that are likely caused by the same fault into buckets (categories),
and present the crash information to developers for debugging.

Existing crash reporting systems [2, 14, 25] mostly focus on col-
lecting and bucketing crash reports effectively. Although the col-
lected crash information is useful for debugging, these systems do
not support automatic localization of crashing faults. As a result,
debugging for crashes requires non-trivial manual efforts.

Over the years, various fault localization techniques (e.g., [1, 18,
21, 22]) have been proposed to help developers locate faults.
These techniques suggest a list of suspicious program entities by
statistically analyzing both the passing and failing execution trac-
es of test cases. Developers can then examine the ranked list to
locate faults. However, these fault localization techniques assume
the availability of complete information of failing and passing
execution traces, while crash reports typically contain only the
crash stacks dumped at the time of crashes.

In this paper, we propose CrashLocator, a novel technique for
locating crashing faults based on crash stacks and static analysis
techniques. Our technique is targeting at locating faulty functions
as functions are commonly used in unit testing and helpful for
crash reproducing [5, 16]. For a widely-used system, one crashing
fault could trigger a large number of crash reports. Therefore, a
sufficient number of crash stacks can be used by CrashLocator for
crashing fault localization.

CrashLocator expands crash stacks into approximate crash traces
(the failing execution traces that lead to crash) using static analy-
sis including call graph analysis, control flow analysis, and back-
ward slicing. For effective fault localization, CrashLocator applies
the concept of term-weighting [24]: locating crashing faults is
treated as the problem of term weighting, i.e., calculating the im-
portance of a function (term) for a bucket of crash traces (docu-
ments). CrashLocator considers several factors to weigh a func-
tion: the frequency of a function appearing in a bucket of crash
traces, the frequency of a function appearing in crash traces of
different buckets, the distance between a function and the crash
point, and the size of a function. Using these factors, CrashLoca-
tor calculates the suspiciousness score of each function in the
approximate crash traces. Finally, it returns a ranked list of suspi-
cious faulty functions to developers. The developers can examine
the top N returned functions to locate crashing faults.

We evaluate CrashLocator using real crash data from three differ-
ent Mozilla products, Firefox, Thunderbird and SeaMonkey. The
evaluation results are promising: using CrashLocator developers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

ISSTA'14, July 21–25, 2014, San Jose, CA, USA.
Copyright 2014 ACM 978-1-4503-2645-2/14/07... $15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ISSTA’14, July 21–25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07...$15.00
http://dx.doi.org/10.1145/2610384.2610386

204

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2610384.2610386&domain=pdf&date_stamp=2014-07-21

can locate 50.6%, 63.7% and 67.5% of crashing faults by examin-
ing top 1, 5 and 10 functions in the returned ranked list, respec-
tively. In addition, the evaluation results show that our approach
outperforms the conventional stack-only approaches.

The main contributions of this paper are as follows:

· We propose a novel technique for locating crashing faults.
Our framework is based on crash stacks only and does not
require additional information from deployment sites or
program instrumentation. To our best knowledge, this is the
first time such a technique is proposed.

· We implement our technique and evaluate our approach
using Mozilla products, which are real and popular projects.

The remainder of this paper is organized as follows: We introduce
background information in Section 2. Section 3 introduces some
observations based on our empirical study and formulates the
crashing fault localization problem. Section 4 describes our ap-
proach. Section 5 presents our experimental design and Section 6
shows the experimental results. We discuss issues involved in our
approach in Section 7 and threats to validity in Section 8. Section
9 surveys related work followed by the conclusion in Section 10.

2. BACKGROUND
Despite immense efforts spent on software quality assurance,
released software products are often shipped with faults. Some
faults manifest as crashes after software deployment. The crash
information from deployment sites is useful for debugging crash-
es.

Figure 1. An overview of crash reporting system.

To collect crash information, many crash reporting systems such
as Windows Error Reporting [14], Apple Crash Reporter [2], and
Mozilla Crash Reporter [25] have been proposed and widely de-
ployed. Figure 1 gives an overview of crash reporting systems.
When a crash happens at a deployment site, the system collects
crash-related information such as product name, version, operat-
ing system, crashed method signature, and crash stack. The col-
lected crash information is sent to the server side upon user per-
mission. Crash reporting systems could receive a large number of
crash reports over time. Since multiple crash reports are caused by
the same fault, the server checks the duplication of crash reports
and assigns those likely caused by the same fault to a bucket.
Finally, the crash reporting system presents the bug reports to
developers.

Figure 2 is an example of crash stack in a Firefox crash report
(crash ID: f2f55573-e2cd-4ce9-92be-b16e72130904). The pro-
gram crashed at Frame 0. Each frame contains a full-qualified
function name and the source file position (source file name and
line number).

In large-scale systems such as Microsoft Windows and Mozilla-
Firefox, developers receive a large number of crash reports sent
by users at deployment sites. These crash reports are automatical-
ly grouped into different buckets, according to the crashed method
signatures [25]. The grouping is based on the assumptions that a
crashing fault results in the same crashed method or similar
stacks. Ideally, each bucket should correspond to a unique crash-
ing fault. In this paper, our research goal is to locate the faulty
function given a bucket of crash reports.

Figure 2. A crash stack example.

3. CRASH LOCALIZATION PROBLEM

3.1 Challenges for Locating Crashing Faults
A crash report typically contains limited information such as
crashed method signature and crash stacks. The execution context,
including structural coverage, under which the fault was triggered,
is unavailable. Localization of faulty functions based on such
limited information is challenging. More specifically, we have
identified the following two main challenges: incomplete crash
trace and uncertain fault location.

Incomplete crash trace
Crash stacks only contain partial crash (failing) traces and do not
contain information of complete passing execution traces. There-
fore, many conventional fault localization techniques cannot be
applied. These fault localization techniques allow programmers to
locate faults by examining a small portion of code [1, 18, 21, 22].
They contrast the passing execution traces with the failing ones,
compute fault suspiciousness of individual program elements
(such as statements and predicates), and present a list of program
elements ranked by their fault suspiciousness. These techniques
are not directly applicable to crashing fault localization because
the crash stacks do not contain complete passing and failing exe-
cution traces. An alternative is to employ symbolic analysis tech-
niques to generate possible test suites from program crashes, and
apply the test suites at deployment site to collect passing and fail-
ing execution traces [3, 4]. This, however, requires the availability
of a precise specification for all library calls and imposes difficul-
ties to end users if program crashes can lead to serious side-
effects. Furthermore, symbolic analysis is expensive and may not
scale up to large programs such as Firefox. Another way for col-
lecting complete passing and failing execution trace is to deploy
an instrumented version at production. The instrumented version
could monitor program execution at deployment sites and send
execution traces as well as debugging information to developers.
However, such monitoring, which considerably increases execu-
tion overheads, is rarely adopted in real production. For example,
earlier studies [23, 32] analyzed dynamic binary instrumentation
overhead, and found that the average performance overhead is

Crash Information

with Crash Stack

Crash Reporting System

Software Crash

Bug ReportsDevelopers Crash Buckets

 nsWindow::ClearCachedResources() widget/windows/nsWindow.cpp:7821

nsWindow::ClearResourcesCallback(HWND__ *,long)

widget/windows/nsWindow.cpp:7812

…

mozilla::ipc::MessagePump::Run(base::MessagePump::Delegate *)

ipc/glue/MessagePump.cpp:117

MessageLoop::RunHandler()

ipc/chromium/src/base/message_loop.cc:201

xul.dll@0x16d800

Frame 0

Frame 1

Frame 63

Frame 64

Frame 65

Crash Signature

205

around 30%-150% for simple instrumentation. A recent method,
BugRedux [16], introduces at function call level an average of
17.4% instrumentation overhead, which is still high for many
applications.

Uncertain fault location
Schröter et al. [29] investigated crash stacks of Eclipse project.
They showed that the bug fixing points of many Eclipse crashing
faults involve the functions in stacks, and the bug fixing points are
more likely to be found in one of the top 10 stack frames. Howev-
er, our empirical study on Firefox projects (to be shown in next
section) shows that many crashing faults also reside at functions
that are popped out from the crash stack. Therefore examining
only functions in crash stacks is inadequate. The location of faulty
function is uncertain – it may or may not appear in the crash stack.

3.2 Empirical Study on Crashing Faults
To find out the amount of crashing faults that reside in the func-
tions of crash stacks, we performed an empirical study on Firefox.
We selected three Firefox released versions, from 4.0b4 to 4.0b6
as shown in the Table 1. To identify the actual faulty functions
that are responsible for the crashes, we mined crash reports, bug
reports and change logs as follows:

(1) We analyzed the crash reports collected by Mozilla Crash
Reporter [25], and identified the crash reports that have links to
bug reports in Mozilla’s bug track system. Since the number of

crash reports in a bucket can be large, we followed the practice of
Dhaliwal et al. [12] and randomly sampled 100 crash reports in
each bucket. If a bucket contains less than 100 crash reports, we
collected all the crash reports in it.

(2) For each crashing fault, we collected the corresponding bug
report whose status is either "RESOLVED FIXED" or "VERI-
FIED FIXED". We further validated the links between the crash
reports and the bug reports by manual inspection. Given a link
between a crash report and a bug report, we exclude the link in
our experiments if they describe different product versions.

(3) For each bug report, we identified corresponding bug-fixing
changes by mining the source code repository. We then obtained
the relevant functions that have been modified to fix the bug.

Following the above steps, we obtained a total of 1107 crash re-
ports corresponding to 51 crashing faults. We found that about
59% to 67% of the crashing faults can be located in the functions
of crash stacks. About 33% to 41% of crashing faults reside in
other functions.

Table 1. The number of crashing faults in stacks (Firefox)

Release
Version

Crashing
Faults

Crashing Faults
Found in Stack

% Crashing Faults
Found in Stack

4.0b4 9 6 66.7%

4.0b5 17 10 58.8%

4.0b6 25 15 60.0%

Through the empirical study, we also make the following observa-
tions about the functions that contain crashing faults:

Observation 1: Crash reports in each bucket are mostly caused by

the same crashing fault. The function containing the fault appears

frequently in the crash traces leading to these crash reports.

Intuitively, if a function appears frequently in multiple crash trac-
es caused by a certain fault, it is likely to be the cause of this fault.
Here, we denote crash trace as the failing execution trace trig-
gered by a crashing fault. In our empirical study, we investigated

how frequently the buggy functions appear in each bucket, and
found that for 89%-92% crashing faults, their associated faulty
functions appear in 100% of the crash traces in the corresponding
bucket. For 89%-96% crashing faults, the associated faulty func-
tion appears in at least 50% of crash traces. The empirical results
show that functions that contain crashing faults appear frequently
in the crash stacks. Therefore, the function frequency can be an
indicator of the suspiciousness of functions.

Observation 2: In a crash trace, functions that contain crashing

faults appear closer to the crash point

In our previous work [11], we found that for some Microsoft
products, the faulty functions are closer to the crash point than the
“clean” functions in a crash trace. This motivates us to investigate
how close the faulty functions of Firefox 4.0 are to the crash
point. The distance to crash point is defined as the position offset
between the current function and the crashed function. Our empir-
ical study shows that for 84.3% of crashing faults, the distance
between the associated faulty function and the crash point is less
than 5, and for 96.1% of crashing faults, the distance to crash
point is less than 10. The results show that the functions that con-
tain crashing faults appear closer to the crash point. Therefore, the
distance to crash point can be an indicator of the suspiciousness of
functions.

Observation 3: Functions that do not contain crashing faults are

often less frequently changed

Intuitively, if a function has not been changed over a long period,
it is less likely to cause a crash. We investigated the number of
changes made to the crashing faults, and found that 94.1% of
faulty functions have been changed at least once during the past
12 months. The results show that “clean” functions are often less

frequently changed. Therefore, the function change information
can be a useful indicator of the suspiciousness of functions.

The above observations can be applied to locate suspicious func-
tions. We utilize these observations in the design of CrashLocator,
which will be introduced in Section 4.

3.3 Problem Definition
The crash traces for multiple crashing faults can be combined into
a matrix as shown in Figure 3, where each column indicates a
function and each row indicates a crash trace. When a function is
covered by a crash trace, it is marked as 1; otherwise as 0. Each
crash trace is associated with a specific bucket.

Figure 3. The crash traces for buckets.

The goal of crashing fault localization is to identify the faulty
functions that cause a crash. We need to assign a suspicious score
to each function in crash traces. Developers can locate faults by
examining the functions highly ranked by their suspiciousness
scores.

If we treat the crash traces derived from the crash stacks of a
bucket as a category of document and a function as a term, such a
problem can be considered as a term-weighting problem [24], i.e.,
computing the importance of a term for documents. Formally, for

f1 f2 … fi-1 fm bucket

T1 1 0 … 1 1 B1

T2 1 1 … 1 1 B1

… … … … … … …

Tk-1 1 1 … 0 1 Bn

Tk 1 0 … 0 1 Bn

206

a set of buckets B (B1, B2, ….Bn) and a set of functions F (f1, f2,

…fm), a weight wi is computed for each function fi (1£ i £m) to

represent the suspiciousness of fi with respect to Bj (1£ j £n), in
such a way that a more suspicious function gets a higher weight.

4. CRASHLOCATOR

4.1 Overview
In this section, we describe the proposed CrashLocator approach.
The overall structure of CrashLocator is shown in Figure 4. Given
a set of bucketed crash reports, CrashLocator first recovers an
approximate crash trace for each reported crash using the pro-
gram’s static function call graph. Since the associated crash stack
does not contain all runtime information, the recovered trace is an
approximation of the real crash trace. CrashLocator then calcu-
lates the suspiciousness score for each function in the recovered
traces. Finally it sorts the functions by their suspicious scores and
outputs a ranked list for developers to locate the fault. We de-
scribe the process of recovering crash traces in Section 4.2 and the
method for ranking suspiciousness functions in Section 4.3.

Figure 4. The overall structure of CrashLocator.

4.2 Recovering Crash Traces

4.2.1 Basic Crash Stack Expansion
Functions that contain crashing faults do not always reside in
crash stacks. Therefore, to locate such crashing faults, the first
step is to recover crash traces based on crash stack. Crash stack
only records the stack information at the time of crash, but the
functions that were popped out of crash stack during execution are
not recorded. To infer possible functions executed before crash,
we can leverage the static call graph [28], which captures the
function call relationships of a crashing program. A static call
graph consists of call pairs. Each call pair consists of the caller
and callee functions. As an example, Figure 5(A) shows a static

function call graph of a simple program, in which each node rep-

resents a function (fi). We use the notation “fi fj” to denote that fi

invokes fj .

Suppose the program starts from f1 and crashes at f11. The crash

stack (Figure 5(B)) f1 f3 f12 f11 actually is not a complete

crash trace. Intuitively, we propose a simple crash stack expansion
method, which expands the given crash stack based on a function

call graph. For example, for f1, there are two call pairs f1 f3 and

f1 f4, since f4 could be called before f3. f4 is included in the ap-

proximated crash trace. Once f4 is included, f9 and f13 can be in
turn included in the approximated crash trace. Similarly, by ex-
panding other functions (f3, f12 and f11) in the crash stack, an ap-
proximated crash trace can be obtained.

To facilitate the description of crash stack expansion, we define a
concept called Call Depth:

Definition: The Call Depth of function fi with respect to a given
crash stack S is the least number of function call steps from any
functions in S to fi.

As an example, Figure 5(C) shows the call depths of the functions
in Figure 5(A). f1 is in the crash stack so its depth is 0. f13 can be

called either by f4 in two steps (f1 f4 f13) or by f12 in one step

(f12 f13). In this case, its call depth is 1 as we choose the least

number of steps to be the call depth. The call depth controls the
set of functions to be analyzed for fault localization. The value of
call depth can be set empirically; greater depth value means that
more functions would be analyzed.

In crash stack expansion, we also consider virtual functions. The
virtual functions are dynamically mapped to a specific method at
program runtime. We apply the class hierarchy analysis method
[7] to statically identify virtual function calls. We first use the
static analysis tool Understand [33] to extract the overridden rela-
tionships among all virtual functions, and then replace each virtual
function by all of its overridden functions.

4.2.2 Improved Crash Stack Expansion
In crash stack expansion, the number of functions can increase
exponentially with the increasing value of call depth. Many irrele-
vant functions could be introduced in this process, which may
affect crash localization adversely. We improve the basic crash
stack expansion algorithm by reducing the number of irrelevant
functions using control flow analysis, backward slicing, and func-
tion change information.

Figure 5. An Example of Recovering Crash Traces.

RANK UNIT

1 function 31

2 function 54

3 function 12

...

...

#include

<stdio.h>

int main()

{

...

...

}

Source Code

Approximate

Crash Traces

Ranking Suspicious

Functions

Ranked List of

Suspicious

Functions

Crash Stack Expansion

Crash Reports with

Bucket

Function Call Graph

Discriminative

Factors

(A) Function call graph
(Crash at f11)

f11(){

if(…){

…

f14();

}else{

a = f15();

b = f16();

c = f17(b);

s = c[i]; //Line1

}
}

File1
f12(J j){

if(…){

…

}else{

f11(); // Line2

}

f13();

}

File2
f3(){

i = f6();

j = f7(i);

f12 (j); //Line3

}

File3

f1(){

f3(); // Line4

f4();

}

File4

(D) Source Code

(B) Crash stack

Frame 0

Frame 1

Frame 2

Frame 3

f11 File1:Line1

f12 File2:Line2

f3 File3:Line3

f1 File4:Line4

Crash Point
Depth Function ID

0

1

2

(C) Function Depth

f1, f3, f12, f11

f4, f6, f7, f13 ,

f14, f15, f16, f17

f9

f1

f2

f6

f3 f5

f9

f7

f13

f12

f4

f17

f16

f10

f14

f15

f11

Control Flow Analysis

207

Our control flow analysis is similar to the approach described in
[30], which aims to exclude the functions that are not reachable
based on crash stack information. For example, in Figure 5(B) and
(D), Frame 0 indicates that a crash happens in the function f11 in
File1 at Line1. Using the basic expansion method f14, f15, f16 and
f17 are included for further expansion. However, the control flow
analysis indicates that f14 is not reachable, and can be treated as
irrelevant functions. We apply the control flow analysis to each
frame in crash stack and exclude the irrelevant functions from the
expanded crash traces.

We perform backward slicing [34] for each frame in the crash
stack, starting from the crash point. For example, in Figure 5(D),
since crash happened at Line1 of File1, variables s and c are rele-
vant to the crash. First, we treat variables s and c as points of in-
terest for slicing. Then, by backward slicing, we know that varia-
ble c is affected by variable b, so we include b in slicing. Finally,
we include the functions f16 and f17 for further expansion because
they are relevant to variable s, b and c. Although function f15 has
been invoked at the time of crash, it has no impact on the crash-
related variables and is excluded from the expanded crash traces.

We also leverage the function change information in our crash
stack expansion algorithm. Our empirical study has shown that, if
a function has not been changed over a long period, it is less likely
to contain a crashing fault. Therefore, we select those functions
that have been changed at least once within a given period for
expansion. In our work, we empirically set the period value to 12
months.

Algorithm: CrashStackExpansion (S,d)

1: create HashSets ExpandSet, Set0, Set1, Set2,…, Setd

2: for each function fi S do

3: insert fi into ExpandSet and Set0

4: P all call pairs starting from fi

5: for each pair < fi, fx > P do

6: if (fx is called by fi via CFA and BSA) && (fx is not in ExpandSet)
7: add fx into ExpandSet and Set1
8: end if
9: end for
10: end for

11: for k 2 to d do

12: for each function fj Setk do

13: P all call pairs starting from fj

14: for each pair < fj, fx > P do

15: if hasBeenChangedRecent(fx, period) //Check whether the func-

tion fx has been changed at least once within the given period

16: if fx is not in ExpandSet
17: add fx into ExpandSet and Setk+1
18: end if
19: end if
20: end for
21: end for
22: end for
23: return ExpandSet

Through the control flow analysis, backward slicing, and the
analysis of function change information, we can reduce the num-
ber of irrelevant functions during crash stack expansion. The
CrashStackExpansion algorithm iteratively expands the crash
stack. It takes S and d as inputs, where S is a crash stack, and d is
a predefined call depth value. First, we mark all the functions in
the original crash stack as depth-0. Then for each function fi in
depth-0, we extract all the functions that are called by the function
f via the control flow analysis (CFA) and backward slicing analy-
sis (BSA), and add those functions that are not in ExpandSet into
depth-1. After that, for each function fj in depth-1, we extract all

the functions that are invoked by fj , and have been changed at
least once within a certain period (e.g., in the past 12 months), and
add those functions that are not in ExpandSet. This process is
repeated until the predefined depth d is reached. Finally, all func-
tions in all depths are collected to form the approximate crash
trace.

4.3 Ranking Suspicious Functions
Based on the observations made in our empirical study (Section
3.2) and our prior research on software defect analysis [39, 40,
41], we consider the following four discriminative factors to iden-
tify the most suspicious functions that could cause crashes.

Function Frequency (FF):

If a function appears frequently in crash traces caused by a certain
fault, it is likely to be the cause of this fault. We identify a factor
Function Frequency (FF), which measures the frequency of a
function f appearing in crash traces of a specific bucket B:

 (1)

where Nf,B is the number of crash traces in bucket B that the func-
tion f appears. NB is the total number of crash traces in bucket B.

Inverse Bucket Frequency (IBF):

If a function appears in crash traces caused by many different
faults, it is less likely to be the cause of a specific fault. We identi-
fy a factor Inverse Bucket Frequency (IBF), which measures the
discriminative power of a function with respect to all buckets:

 (2)

where #B is the total number of buckets, and #Bf is the number of
buckets whose crash traces contain the function f.

Inverse Average Distance to Crash Point (IAD):

If a function appears closer to the crash point, it is more likely to
cause the crash. We identify a factor Inverse Average Distance to

Crash Point (IAD) that measures how close a function is to the
crash point:

 (3)

where n is the number of crash traces in the bucket B that include
the function f. disj(f) represents the distances between the crash
point and f in the j-th crash trace, which is defined as follows:

 (4)

where posj(f) is the position offset between the crash point and the
stack frame from which f is expanded, in the j-th crash trace.
CallDepthj(f) is the call depth of f in the j-th crash trace.

Function’s Lines of Code (FLOC):

Our prior research on software defect prediction [39] shows that
larger modules are more likely to be defect-prone. Therefore, we
use the function’s size as a discriminative factor. We measure
function in terms of lines of code and identify a factor FLOC as
follows:

 (5)

where LOC(f) is the number of lines of code of function f.

208

Combining the above four factors, we calculate the suspiciousness
score of a function f with respect to a bucket B as follows:

 (6)

Our method assigns higher scores to the functions that appear
more frequently in crash traces in a bucket, less frequently in
crash traces of other buckets, closer to the crash point, and larger
in LOC. For each crash bucket, CrashLocator calculates the suspi-
cious score of each function, ranks all the functions by the scores
in descending order, and recommends the ranked list to develop-
ers. The developers can then examine the top N functions in the
list to locate crashing faults.

5. EXPERIMENTAL DESIGN
This section describes our experimental design for evaluating
CrashLocator.

5.1 Experimental Setup
We choose three large-scale open source projects, namely Fire-
fox1, ThunderBird2, and SeaMonkey3, as our evaluation subjects,
because all of them maintain publically available crash data col-
lected by Mozilla Crash Reporter [25]. We have collected crash
reports for 5 releases of Firefox, 2 releases of Thunderbird and 1
recent release of SeaMonkey. Each release contains about 9~20K
source files and 120K~280K functions. The collected crash re-
ports are organized into different buckets by the Mozilla Crash
Reporter according to the crash signatures (i.e., stacks with the
same crash points are categorized in the same bucket).

We followed the same process as described in Section 3 to collect
the data. We collected altogether 160 unique crashing faults
(buckets). The details of our dataset are listed in Table 2.

5.2 Evaluation Metrics
CrashLocator produces a ranked list of all functions according to
their suspiciousness scores (the top most function has the highest
suspicious score). Developers can examine the list and locate faulty
functions. Clearly, it is desirable that the faulty functions are
ranked higher in the list. We evaluate the performance of Crash-
Locator using the following metrics:

· Recall@N: The percentage of crashing faults whose relevant
functions can be discovered by examining the top N (N = 1,
5, 10…) of the returned functions. A better crashing fault
localization technique should allow developers to discover
more faults by examining fewer functions. Thus, the higher
the metric values, the better the fault localization perfor-
mance.

· MRR (Mean Reciprocal Rank), which is a statistic for evalu-
ating a process that produces a list of possible responses to a
query [24]. The reciprocal rank of a query is the multiplica-
tive inverse of the rank of the first relevant answer. The
mean reciprocal rank is the average of the reciprocal ranks of
results of a set of queries Q:

 (7)

The higher the MRR value, the better the fault localization
performance. In our experiment, we use MRR to measure the

1http://www.mozilla.org/firefox/
2http://www.mozilla.org/thunderbird/
3http://www.mozilla.org/seamonkey/

ability of CrashLocator in locating the first relevant faulty
function for all crashing faults.

5.3 Research Questions
To evaluate our approach, we design experiments to address the
following research questions:

RQ1: How many faults can be successfully located by

CrashLocator?

RQ1 evaluates the effectiveness of our approach. To answer RQ1,
we evaluate CrashLocator on the dataset described in Table 2. For
each crashing fault, we examine the ranked suspicious functions
returned by CrashLocator. If any function relevant to the fault is
discovered, we consider that the fault is localized. We use
Recall@N and MRR to evaluate the performance of CrashLocator.

RQ2: Can CrashLocator outperform the conventional stack-only

methods?

As described in Section 3, Schröter et al. [29] observed that many
crashing faults can be found by manually examining the original
crash stacks4. This RQ compares the performance of CrashLocator
with the performance of the following three crash stack based
localization methods:

· StackOnlySampling method, in which we randomly select
one crash report from each bucket, rank the functions based
on their order in the crash stack, and calculate the percent-
age of crashing faults that can be localized within the top N
functions. As the crash reports in a bucket can differ in
stacks, the rank of the functions would be different when
sampling different crash reports. To overcome the random-
ness, we repeat the above process 100 times, and compute
the average Recall@N value as the final results.

· StackOnlyAverage method, in which we calculate the aver-
age distance to crash point of each function appearing in a
bucket. The functions are ranked based on the reverse order
of the average distance. We then calculate the percentage of
crashing faults that can be localized within the top N func-
tions, and compute Recall@N values for all faults.

· StackOnlyChangeDate method, in which we randomly select
one crash report from each bucket, rank the functions based
on the reverse chronological order of their last modified date,
and calculate the percentage of crashing faults that can be lo-
calized within the top N functions. We repeat the above pro-
cess 100 times, and compute the average Recall@N value as
the final results.

RQ3: How does each factor contribute to the crash localization

performance?

In Section 4.3, we propose four factors, namely the function fre-
quency (FF) factor, the inverse bucket frequency (IBF) factor, the
inverse average distance to crash point (IAD) factor, and the func-
tion’s lines of code (FLOC) factor. RQ3 evaluates the effective-
ness of these factors on crash localization performance. To answer
RQ3, we incrementally integrate the factors into CrashLocator,
perform crash localization on all subject systems, and compare the
results with the results obtained by Equation 6 (the combination of
all the four factors).

RQ4: How effective is the proposed crash stack expansion algo-

rithm?

4 Our discussions with some Firefox developers have confirmed
that they also locate crashing faults by examining stack frames
in crash reports.

209

Table 2. The basic information of dataset

Firefox 4.0b4 Firefox 4.0b5 Firefox 4.0b6 Firefox 14.0.1 Firefox 16.0.1

Thunderbird
17.0

Thunderbird
24.0

SeaMonkey
2.21

Source Code Files 9523 9612 9518 10617 11601 16129 19608 19576

Functions 123K 125K 121K 148K 165K 214K 280K 280K

Lines of Code 2220K 2249K 2229K 2542K 2754K 3674K 4622K 4614K

Crashing Faults 9 17 25 25 13 33 18 20

Crash Reports 216 394 497 803 326 173 81 105

In Section 4.2, we describe a basic crash stack expansion method,
which expands a crash stack based on a static call graph. We also
propose an improved crash stack expansion algorithm (the
CrashStackExpansion algorithm), which excludes irrelevant
functions by utilizing control flow analysis, backward slicing, and
function change information. RQ4 evaluates the effectiveness of
the improved crash stack expansion algorithm, and compares it
with the basic expansion algorithm. To answer RQ4, we run
CrashLocator with the basic and improved expansion algorithms
respectively, and use the Recall@N and MRR values to evaluate
the performance improvement.

6. EXPERIMENTAL RESULTS
This section presents our experimental results by addressing the
research questions.

RQ1: How many faults can be successfully located by

CrashLocator?

Table 3 shows the crashing fault localization results achieved by
CrashLocator for the subject systems. The call depth is set to 5.
For each studied subject, CrashLocator can locate the relevant
faulty functions for 47.1% to 55.6% of the crashing faults and
rank them as the top 1 among the returned results. The Recall@1
value for all subjects is 50.6%. For 53.8% to 78.8% of the
crashing faults, CrashLocator can successfully rank their relevant
faulty functions within the top 10 returned results. The Recall@10
value for all versions is 67.5%. The results show that using our
approach we can locate a large percentage of crashing faults by
examining just a few functions (out of more than 121K functions).

Table 3 also shows the performance of CrashLocator measured in
terms of MRR. The MRR values range from 0.528 to 0.627. The
MRR value for all subjects is 0.559. In general, the evaluation
results show that CrashLocator is effective in identifying faulty
functions based on crash stacks.

Table 3. The performance of CrashLocator

System Recall@1 Recall@5 Recall@10 MRR

Firefox 4.0b4 5(55.6%) 6(66.7%) 7(77.8%) 0.627

Firefox 4.0b5 8(47.1%) 12(70.6%) 12(70.6%) 0.566

Firefox 4.0b6 12(48.0%) 16(64.0%) 16(64.0%) 0.540

Firefox14.0.1 13(52.0%) 13(52.0%) 14(56.0%) 0.528

Firefox16.0.1 7(53.8%) 7(53.8%) 7(53.8%) 0.542

Thunderbird17.0 16(48.5%) 22(66.7%) 26(78.8%) 0.568

Thunderbird24.0 9(50.0%) 12(66.7%) 12(66.7%) 0.544

SeaMonkey2.21 11(55.0%) 14(70.0%) 14(70.0%) 0.600

Summary 81(50.6%) 102(63.7%) 108(67.5%) 0.559

RQ2: Can CrashLocator outperform the conventional stack-

only methods?

Figure 6 shows that CrashLocator outperforms the three conven-
tional fault localization methods that are based on stack only. In
total (combining all studied subjects), 50.6% of the crashing faults
can be located by examining the first returned result by Crash-
Locator, while only 32.6%, 35.6%, and 11.3% of faults can be
located in the first function returned by the StackOnlySampling,
StackOnlyAverage, and StackOnlyChangeDate method, respec-
tively. Also, 67.5% of the crashing faults can be located by exam-
ining the top 10 functions returned by CrashLocator, while only
54.8%, 53.8%, and 46.3% faults can be located in the top 10 func-
tions returned by the StackOnlySampling, StackOnlyAverage, and
StackOnlyChangeDate method, respectively. Overall, the im-
provement of CrashLocator over the stack-only methods ranges
from 23.2% to 45.8% in terms of Recall@10.

Figure 6. The comparisons between CrashLocator and three

stack-only methods (Recall@N).

Table 4 also shows the Recall@1 values achieved by different
methods for the studied subjects. The improvement of CrashLoca-
tor over StackOnlySampling ranges from 14.3% to 267%. Simi-
larly, the improvement of CrashLocator over StackOnlyAverage
ranges from 14.3% to 275%. The improvement of CrashLocator
over StackOnlyChangeDate is even more significant, ranging
from 148% to 1500%.

 Table 4. The comparisons between CrashLocator and three

stack-only methods (Recall@1)

System
Crash

Locator
StackOnly
Sampling

StackOnly
Average

StackOnly
ChangeDate

Firefox 4.0b4 55.6% 33.3% 33.3% 20.1%

Firefox 4.0b5 47.1% 41.2% 41.2% 19.9%

Firefox 4.0b6 48.0% 36.0% 36.0% 17.2%

Firefox14.0.1 52.0% 32.6% 40.0% 12.6%

Firefox16.0.1 53.8% 30.8% 38.5% 7.7%

Thunderbird17.0 48.5% 36.4% 39.4% 3.0%

Thunderbird24.0 50.0% 33.3% 33.3% 8.7%

SeaMonkey2.21 55.0% 15.0% 20.0% 10.0%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 5 10 20 50 100

R
e

ca
ll

@
N

Top N Functions

StackOnlySampling

StackOnlyAverage

StackOnlyChangeDate

CrashLocator

210

Figure 7 shows that, in terms of MRR, CrashLocator also outper-
forms the stack-only methods for each studied subjects. The im-
provement of CrashLocator over StackOnlySampling ranges from
28.9% to 139%, over StackOnlyAverage from 20.7% to 107%,
and over StackOnlyChangeDate from 74.1% to 329%. Pair-wised
t-tests also confirm the statistical significance of the results.

Overall, CrashLocator outperforms the conventional stack-only
methods. This is because not all faults reside in crash stack. The
stack-only methods have an inherent limitation (an upper bound
exists) in locating all crashing faults.

Figure 7. The comparisons between CrashLocator and three

stack-only methods (MRR).

Figure 8. The contribution of each factor (MRR).

RQ3: How does each factor contribute to the crash localization

performance?

Figure 8 shows the performance (measured in terms of MRR) of
CrashLocator by incrementally applying the IBF factor, the FF
factor, the FLOC factor and the IAD factor. When the IBF factor
is applied alone, the performance is the lowest (e.g., the overall
MRR is 0.102). The performance is improved when the FF factor
is combined with the IBF factor, as well as the FLOC factor. Fi-
nally, when all the four factors are considered (i.e., the Crash-
Locator approach), the performance is the best (e.g., the overall
MRR is 0.559). Similar results can be observed when the perfor-
mance is measured in terms of the Top N values. Overall, all the
four factors, IBF, FF, FLOC and IAD can contribute to the per-
formance of crash localization. The IAD factor has more signifi-
cant contributions than the other factors.

RQ4: How effective is the proposed crash stack expansion algo-

rithm?

Figure 9 shows the comparison between the improved crash stack
expansion algorithm and the basic expansion algorithm. The call

depth is set to 5. In terms of Recall@N (N=1, 5, 10, 20, 50), the
improved expansion algorithm outperforms the basic one by
13.3%- 72.3%. In terms of MRR, the improvement of the im-
proved expansion algorithm over the basic one is 59.3%.

Overall, the improved crash stack expansion algorithm outper-
forms the basic one. This is because the irrelevant functions are
filtered out by the improved expansion algorithm and the ranks of
the faulty functions can be improved after the filtering.

Figure 9. The comparisons between the improved crash stack

expansion algorithm and the basic one.

7. DISCUSSIONS

7.1 How do different depths affect the re-

sults?

In our approach, the concept of call depth is adopted to include
more functions into the ranked list of suspicious functions. The
choice of call depth affects the results of crashing fault localiza-
tion. Generally, increasing the depth allows to locate more faults,
but it also includes more functions into the ranked list.

Table 5. Faults included in each call depth

Depth
0

Depth
1

Depth
2

Depth
3

Depth
4

Depth
5

Depth
6

Depth
7

Recall

@1

62

(38.8%)

79

(49.4%)

79

(49.4%)

79

(49.4%)

80

(50.0%)

81

(50.6%)

81

(50.6%)

82

(51.2%)

Recall

@5

88

(55.0%)

93

(58.1%)

93

(58.1%)

99

(61.9%)

102

(63.7%)

102

(63.7%)

101

(63.1%)

101

(63.1%)

Recall

@10

91

(56.9%)

95

(59.4%)

95

(59.4%)

103

(64.4%)

106

(66.2%)

108

(67.5%)

106

(66.2%)

106

(66.2%)

Table 5 shows the total number of crashing faults that can be dis-
covered at different call depths, when examining the Top N (N =
1,5,10) returned functions for all versions. The call depth 0 repre-
sents the raw crash stacks without any expansion. For depth-0,
when only the top 1 function is examined, 62 crashing faults can
be located. This number increases with the increase of call depth.

When the call depth reaches 7, 82 crashing faults can be discov-
ered by examining the top 1 returned function. For Recall@3 and
Recall@5, we observe the same trend with the increase of depth.
However, since deeper depths introduce more functions, the irrel-
evant functions among them would affect the ranking of relevant
functions. For example, when the depth reaches 7, the Recall@5
and Recall@10 values are slightly worse than the values when the
depth is 5.

7.2 Why does CrashLocator work?
CrashLocator uses a crash stack expansion approach to generate
approximate execution traces, thus it could discover faulty func-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

firefox4.0b4

firefox4.0b5

firefox4.0b6

firefox14.0.1

firefox16.0.1

Thunderbird17.0

Thunderbird24.0

SeaMonkey2.21

Summary

MRR Comparison

CrashLocator StackOnlySampling

StackOnlyAverage StackOnlyChangeDate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

firefox4.0b4 firefox4.0b5 firefox4.0b6 firefox14.0.1 firefox16.0.1 thunderbird17.0 thunderbird24.0 seamonkey2.21 Summary

IBF IBF+FF IBF+FF+FLOC IBF+FF+FLOC+IAD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall@1 Recall@5 Recall@10 Recall@20 Recall@50 MRR

Basic Stack Trace Expansion Improved Stack Trace Expansion

211

tions that do not reside in the crash stack. Our experimental results
have shown that, the expanded traces are useful to localize crash-
ing faults. As an example, let us examine the Firefox Bug 600079,
which is associated with 21 crash reports. This bug was fixed at
the function mozilla::gl::GLContext::InitWithPrefix that did not
appear in the crash stack. Therefore, examining only the functions
in crash stack is not sufficient. However, this function is called by
the functions in the crash stack. CrashLocator can successfully
locate this kind of faults via crash stack expansion. Actually the
faulty function mozilla::gl::GLContext:: InitWithPrefix is ranked
4th by CrashLocator.

CrashLocator also considers four factors for locating relevant
functions to a fault. The Function Frequency (FF) factor is based
on the fact that, if a function is the root cause of a crashing fault, a
large number of crash traces caused by this fault should contain
this function after expansion. The Inverse Bucket Frequency
(IBF) factor is based on the observation that, if a function appears
in many different crashing faults’ traces (such as a logging func-

tion), this function is less likely to be faulty. CrashLocator also
considers the factor of the distance to crash point (IAD), under the
assumption that functions closer to the crash point are more crash-
prone. This has also been observed by others [11, 29].

We give an example of crashing fault that can be located using
our approach. Let us examine the Firefox Bug 596245, which is
associated with 9 crash reports. This bug was fixed at the function
GetStyleContextForElementNoFlush. Similar to Bug 600079, the
faulty function does not reside in the crash stacks. With the crash
stack expansion algorithm, CrashLocator can successfully include
the faulty function into the suspicious list by expansion. If only
the IAD factor is considered, the faulty function GetStyleContext-

ForElementNoFlush is ranked 20th, which is not a very high rank-
ing. CrashLocator also leverages the information from the whole
bucket of crash stacks. The FF factor gives lower scores to the
functions that are occasionally close to the top of crash stacks and
the IBF factor gives lower weight to the commonly-used functions.
By combining the factors IAD, FF and IBF, CrashLocator reduces
the rankings of irrelevant functions and promotes the rank of the
faulty function GetStyleContextForElementNoFlush to 7th. The
factor FLOC further increases the priority and finally CrashLoca-
tor can rank the faulty function in the 4th place.

In our approach, CrashLocator leverages the information of crash
stacks associated with the same crashing fault (i.e., in the same
bucket). A bucket usually contains many crash stacks collected
from different clients. However, it is also possible that there is
only one crash report in a bucket. CrashLocator still works in this
extreme case. The FF and IBF factors would have no contribution
to the assignment of weights to the faulty functions. However, the
IAD and FLOC factors can still assign higher score to the suspi-
cious functions. For example, in Firefox 4.0b8, 9 crashing faults
(buckets) have only one crash report, 6 of them can be successful-
ly located by CrashLocator.

Although CrashLocator is effective, it still cannot locate all crash-
ing faults even after the expansion of crash stacks. For example,
the multithread-related faults are difficult to locate. To illustrate
this, we take the Bug 505059 as an example. This bug affects the
constructor nsStyleSheetService and its destructor. According to
the comments of developers recorded in Firefox Bugzilla, this
crash is caused by multiple threads accessing the same reference
of a service object. Since the initialization and destruction of the
object are done in other threads, CrashLocator cannot locate this
kind of fault. Discovering all types of crashing faults effectively
remains an important future work.

7.3 Can a better bucketing algorithm improve

crashing fault localization performance?
In our experiments described in Section 5, we use the crash data
provided by Mozilla Crash Reporter [25]. The crash reports are
organized into 160 buckets. The bucketing algorithm adopted by
Mozilla is not perfect as some buckets are duplicate. We analyze
the impact of bucketing accuracy on the performance of crashing
fault localization. We manually examine the buckets and merge
the duplicate ones (thus making each bucket corresponds to one
unique fault), and run the CrashLocator again over the “perfect”
buckets. The results show that the fault localization performance
does not differ significantly (the differences are less than 0.002,
which are not statistically significant), even a better bucketing
algorithm is adopted. This is because the extra crash traces pro-
vided by duplicate buckets can be also used for effective crashing
fault localization.

8. THREATS TO VALIDITY
We identify the following threats to validity:

· Subject selection bias: In this experiment, we only use data
from Mozilla products because of the difficulty in accessing
real-world crash reports. We could not find any other open
source projects having a large number of publicly available
crash reports that are well collected and organized. In the fu-
ture, we will evaluate CrashLocator on more projects in-
cluding industrial projects.

· Large amount of data: Our approach works better when
there is a large volume of crash reports. For a small or short-
living system, the number of crash reports is often small,
thus making the statistical analysis inappropriate.

· Crash data quality: In this experiment, we directly used the
crash data provided by the Mozilla crash reporting system.
The quality of crash data could affect fault localization per-
formance. Although we collect crash reports for different
Mozilla products, the data could be still biased. In the future,
we will investigate techniques to measure and improve the
crash data quality.

· Empirical evaluation: In this paper, we design experiments
to evaluate the effectiveness of CrashLocator. Ultimately,
the usefulness of a fault localization method should be eval-
uated by real developers in actual debugging practice. Per-
forming a user study is an important future work.

9. RELATED WORK

9.1 Crash Analysis
In recent years, many studies have been dedicated to the analysis
of crashes of real-world, large-scale software systems. To auto-
matically collect crash information from the field, many crash
reporting systems are deployed. For example, Microsoft deployed
a distributed system called Windows Error Reporting (WER) [14].
During its ten years of operation, it has collected billions of crash
reports [14]. These crash reports have helped developers diagnose
problems. After receiving crash reports, a crash reporting system
needs to organize them into categories. The process of organizing
similar crash reports caused by the same problem is often called
bucketing [14]. Dang et al. [11] proposed a method for finding
similar crash reports based on call stack similarity. Sung et al. [19]
also proposed to identify duplicate crash reports based on the
similarity of crash graphs.

Ganapathi et al. [13] analyzed Windows XP kernel crash data and
found that OS crashes are predominantly caused by poorly-written

212

device driver code. Researchers have also proposed methods for
reproducing crashes in house. For example, ReCrash [5] was pro-
posed to generate unit tests that reproduce a given crash based on
captured program execution information. Csallner and Smaragda-
kis proposed methods for generating unit test cases for reproduc-
ing crashes [9, 10].

The above work studied the construction of a crash reporting sys-
tem, the causes of crashes, and the reproduction of crashes. Our
work also focuses on analyzing software crash reports. Unlike the
above work, we address the problem of locating crashing faults, in
order to facilitate debugging activities.

9.2 Automated Debugging
Debugging software is an expensive and mostly manual process.
Over the years, many automated debugging techniques have been
proposed to support debugging tasks. Fault localization methods
(e.g., [1, 18, 21, 22]) can rank suspicious statements in programs
based on the percentages of failing and passing test cases that
execute the statements. These methods mainly differ in the type of
execution information collected (e.g., statements [18] or predi-
cates [21, 22]), and in the way they compute suspiciousness scores
[1]. Parnin and Orso did an investigation [26] on the effectiveness
of fault localization techniques by comparing programmers de-
bugging time with and without automatic debugging tools. Their
results show that simply examining a faulty statement in isolation
is not always enough for developers to detect a bug. Our tech-
nique leverages crash stack only and can achieve high accuracy in
fault localization at the function level. Our experiments show that
developer could locate more than 67.5% faults in different Mozil-
la products by examining only the top 10 returned functions.

Besides statistical fault localization techniques, many other tech-
niques have also been proposed to facilitate debugging [27, 37].
For example, Yoo et al. proposed Information Theory based tech-
niques that can reduce fault localization costs and improve the
effectiveness [35]. Zhou et al. [42] proposed an information re-
trieval based approach, which can locate faulty files based on
initial bug reports. Jiang et al. [15] proposed a context-aware sta-
tistical debugging method that can not only locate the bug but also
provide the faulty control flow paths. Delta debugging [36] sim-
plifies the failed test cases and yet preserves the failures, produc-
ing cause-effect chains and linking them to suspicious statements.
Zhang et al. [38] applied program slicing techniques to fault local-
ization by identifying a set of program entities that could affect
the values of variables at a given program point. Artzi et al. [3, 4]
proposed fault localization methods that leverage combined con-
crete and symbolic executions. F. Servant and J. Jones [31] lever-
aged the statistical fault localization results and the history of
source code to assign the faults to developers. These techniques
require many inputs such as test cases, complete execution traces
and initial bug reports. Our approach utilizes only crash stack
information.

Liblit et al. [20, 21] proposed a sparse sampling based statistical
debugging method that can reduce the overhead of instrumenta-
tion in released program. Their sampling instrumentation tech-
nique incurs less than 5% slowdown at 1/1000 sampling rate.
However, as they pointed out, lower sampling rate means that
more sampling traces from users are required in order to observe
the rare events (i.e., the observation of faulty entity execution).
Therefore their method is more suitable for popular and widely-
used software, while our approach only relies on crash stacks
collected by a crash reporting system. Furthermore, their approach
requires users to execute specially instrumented software releases,
while our approach requires only the normal releases of software.

Chilimbi et al. proposed an adaptive and iterative profiling meth-
od called Holmes [8] to locate post-release faults. Holmes also
considers functions in stack that are closer to the crash point as
more important ones. Our approach is different in that Holmes
needs to instrument the program and collect the dynamic infor-
mation from end-users. Also, our approach considers more factors
such as the frequency as well as the inverse bucket frequency of a
function. Ashok et al. proposed a tool called DebugAdvisor [6],
which can facilitate debugging by searching for similar bugs that
have been resolved before. DebugAdvisor requires the users to
specify their debugging context as a “fat query”, which contains
all the contextual information such as bug descriptions. Unlike
DebugAdvisor, our work only requires source code and crash
stacks.

Jin and Orso proposed a failure reproducing tool named
BugRedux [16]. BugRedux collects different kinds of execution
data from end users and reproduces field failures using symbolic
analysis. The exploration study of BugRedux shows that function
call sequence is the most effective data for reproducing faults. To
collect function call sequence, the instrumentation overhead is
from 1% to 50%, on average 17.4%. Based on BugRedux, Jin and
Orso also proposed the F3 approach [17] for localizing field fail-
ures. F3 uses the collected execution data to generate multiple
passing and failing executions, which are similar to the observed
field failures. Both BugRedux and F3 focus on failure reproduc-
tion or localization by analyzing an observed failure report one at
a time. Our work targets at crashing fault localization by statisti-
cally analyzing a large amount of crash data collected from differ-
ent users. Besides, our work is different from BugRedux and F3 in
that our approach does not require code instrumentation and
would not cause performance overhead.

10. CONCLUSIONS
In this paper, we propose CrashLocator, a novel technique for
automatically locating crashing faults. Based on crash stacks,
CrashLocator generates approximate crash traces by stack expan-
sions, computes the suspiciousness scores of all functions in the
approximate crash traces, and returns a ranked list of suspicious
functions. Our evaluations on three Mozilla products in eight ver-
sions show that the proposed approach is effective in locating
crashing faults. Using CrashLocator, we can locate 50.6%, 63.7%
and 67.5% of crashing faults by examining only top 1, 5 and 10
functions. The evaluation results show that our approach outper-
forms the conventional stack-only methods significantly, with the
improvement in Recall@10 ranging from 23.2% to 45.8%.

In the future, we will evaluate CrashLocator on more projects,
including industrial projects. We will also try to integrate Crash-
Locator into a crash reporting system and evaluate its effective-
ness in practice.

11. ACKNOWLEDGEMENTS
This research is supported by the Hong Kong SAR RGC/GRF
grants 611912 and 16201814, as well as NSFC grant 61272089.
We thank Liang Gong, Hyunmin Seo, and Ming Wen for their
help and comments on experiments and on an initial version of
this paper. We also thank Mozilla Firefox developers who helped
answer our questions.

12. REFERENCES
[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. “On the

accuracy of spectrum-based fault localization”. In Proceed-

ings of Testing: Academic and Industrial Conference Prac-

tice and Research Techniques - MUTATION (TAICPART-

213

MUTATION 2007), pages 89-98. IEEE Computer Society
Press, 2007.

[2] Apple, “Technical Note TN2123: CrashReporter,” 2010,
develop-
er.apple.com/library/mac/#technotes/tn2004/tn2123.html.

[3] S. Artzi, J. Dolby, F. Tip and M. Pistoia. Practical fault
localization for dynamic web applications. In Proc. ICSE

2010, pp. 265 – 274, Cape Town, South Africa, 2010.
[4] S. Artzi, J. Dolby, F. Tip and M. Pistoia. Directed test

generation for effective fault localization. In Proc. ISSTA

2010, pp. 49 – 60, Trento, Italy, 2010.
[5] S. Artzi, S. Kim, and M. D. Ernst, “ReCrashJ: a tool for cap-

turing and reproducing program crashes in deployed applica-
tions”. In Proc. ESEC/FSE’09, pp. 295-296, August 2009.

[6] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa and
V. Vangala. DebugAdvisor: a recommender system for
debugging. In Proc. ESEC/FSE’09, pp. 373-382, Amsterdam,
The Netherlands, August 2009.

[7] D. F. Bacon and P. F. Sweeney. Fast static analysis of c++
virtual function calls. In Proc. OOPSLA, pp. 324-341, 1996.

[8] T. Chilimbi, B. Liblit, K. Mehra, A. Nori, and K. Vaswani.
“Holmes: effective Statistical Debugging via Efficient Path

Profiling”. In Proc. ICSE 2009, pp. 34-44, 2009.
[9] C. Csallner and Y. Smaragdakis, "JCrasher: an automatic

robustness tester for Java," Softw. Pract. Exper., vol. 34, pp.

1025 1050, 2004.

[10] C. Csallner and Y. Smaragdakis. Check ’n’ Crash: Combin-

ing static checking and testing. In Proc. ICSE 2005, pp. 422–

431.
[11] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel, "Re-

Bucket: A method for clustering duplicate crash reports
based on call stack similarity", In Proc. ICSE 2012, pp.1084-
1093, Zurich, Switzerland, June 2012.

[12] T. Dhaliwal, F. Khomh, and Ying Zou. Classifying field
crash reports for fixing bugs: A case study of Mozilla Firefox.
In Proc. ICSM 2011, pp. 333-342, Williamsburg, VA, USA,
Sep 2011.

[13] A. Ganapathi, V. Ganapathi, and D. Patterson, "Windows XP
kernel crash analysis," in Proceedings of the 20th conference

on Large Installation System Administration. Washington,
DC: USENIX Association, 2006, pp. 12-12.

[14] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgo-
van, G. Nichols, D. Grant, G. Loihle, and G. Hunt, "Debug-
ging in the (very) large: ten years of implementation and ex-
perience," in Proc. SOSP 2009, Big Sky, Montana, USA, pp.
103-116, 2009.

[15] L. Jiang and Z. Su. Context-aware statistical debugging: from
bug predictors to faulty control flow paths. In Proc. ASE

2007. ACM, 2007.
[16] W. Jin and A. Orso. "BugRedux: Reproducing field failures

for in-house debugging." In Proc. ICSE 2012, pp. 474–484,
Zurich, Switzerland, 2012.

[17] W. Jin and A. Orso. “F3: Fault Localization for Field Fail-

ures.” In Proc. ISSTA 2013, pp.213-223, Lugano, Switzer-
land, 2013.

[18] J. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In Proc. ICSE 2002,
pp. 467-477, Orlando, FL, USA, 2002.

[19] S. Kim, T. Zimmermann, and N. Nagappan, Crash graphs:
An aggregated view of multiple crashes to improve crash tri-
age, In Proc. DSN 2011, pp. 486 – 493, Hong Kong, June
2011.

[20] B. Liblit, A. Aiken, A. X. Zheng, and Michael I.Jordan. “Bug
isolation via remote program sampling”. In Proc. PLDI 2003,

pp. 141–154, San Diego, CA, 2003.
[21] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. Jordan.

“Scalable statistical bug isolation”, In Proc. PLDI 2005, pp.
5-26, 2005.

[22] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. SOBER:
Statistical model-based bug localization. In Proc. ESEC/FSE

05, pp. 286-295, Lisbon, Portugal, 2005.
[23] C. Luk , R. Cohn , R. Muth , H. Patil , A. Klauser , G. Low-

ney , S. Wallace , V. J. Reddi , and K. Hazelwood, “Pin:

building customized program analysis tools with dynamic in-
strumentation”, In Proc. PLDI 2005, pp. 190-200, Chicago,
Illinois, USA, June 2005.

[24] C. D. Manning, P. Raghavan and H. Schütze. Introduction to

Information Retrieval, Cambridge University Press, 2008.
[25] Mozilla, "Mozila Crash Reports," 2012, http://crash-

stats.mozilla.com.
[26] C. Parnin, and A. Orso. "Are Automated Debugging Tech-

niques Actually Helping Programmers?", In Proc. ISSTA

2011, pp. 199-209.
[27] M. Pezze and M. Young. Software Testing and Analysis:

Process, Principles and Techniques. Wiley, 2007.
[28] B. Ryder, "Constructing the Call Graph of a Program", IEEE

Transactions on Software Engineering, 5(3), pp. 216-226,
1979.

[29] A. Schröter, N. Bettenburg, and R. Premraj, “Do stack traces

help developers fix bugs?”, In Proc. MSR 2010, pp. 118–121.
[30] H. Seo and S. Kim. Predicting recurring crash stacks. In ASE

2012, pp. 180 – 189, Essen, German, Sep 2012.
[31] F. Servant and J. Jones. "WhoseFault: Automatic developer-

to-fault assignment through fault localization." in Proc. ICSE

2012, Zurich, Switzerland, June 2012.
[32] G. Uh, R. Cohn, B. Yadavalli, R. Peri, and R. Ayyagari.

“Analyzing dynamic binary instrumentation overhead”. In

WBIA Workshop at ASPLOS, 2006.
[33] Understand for Java tool, available at www.scitools.com
[34] G. A. Venkatesh. The semantic approach to program slicing.

In Proc. PLDI 1991, pp. 107-119, Toronto, Canada, June
1991.

[35] S. Yoo, M. Harman, and D. Clark. Fault Localization
Prioritization: Comparing Information Theoretic and
Coverage Based Approaches, ACM Transactions on

Software Engineering and Methodology, to appear, 2013.
[36] A. Zeller. Isolating cause-effect chains from computer pro-

grams. In Proc. FSE 2002, pp. 1-10, Charleston, South Caro-
lina, 2002.

[37] A. Zeller. Why does my program fail? A guide to automated

debugging. Morgan Kaufmann, May 2005.
[38] X. Zhang, N. Gupta, and R. Gupta. Pruning Dynamic Slices

With Confidence. In PLDI 2006, pages 169–180, June 2006.
[39] H. Zhang. An investigation of the relationships between lines

of code and defects. In Proc. ICSM 2009, pp. 274–283,
Edmonton, Alberta, Canada, 2009.

[40] H. Zhang, X. Zhang, and M. Gu, Predicting Defective
Software Components from Code Complexity Measures, In
Proc. PRDC 2007, Melbourne, Australia, 93-96, Dec 2007.

[41] H. Zhang, On the Distribution of Software Faults, IEEE

Trans. on Software Eng., 34(2), 2008.
[42] J. Zhou, H. Zhang, and D. Lo, Where Should the Bugs be

Fixed? in Proc. ICSE 2012, Zurich, Switzerland, June 2012.

214

