
Context-Aware Patch Generation for Better
Automated Program Repair

Ming Wen1, Junjie Chen2,3, Rongxin Wu1, Dan Hao2,3, Shing-Chi Cheung1
1Department of Computer Science and Engineering

The Hong Kong University of Science and Technology, Hong Kong, China

{mwenaa,wurongxin,scc}@cse.ust.hk
2Key Laboratory of High Confidence Software Technologies (Peking University), MoE

3Institute of Software, EECS, Peking University, Beijing, 100871, China

{chenjunjie,haodan}@pku.edu.cn

ABSTRACT

The effectiveness of search-based automated program repair is

limited in the number of correct patches that can be successfully

generated. There are two causes of such limitation. First, the search

space does not contain the correct patch. Second, the search space

is huge and therefore the correct patch cannot be generated (i.e.,

correct patches are either generated after incorrect plausible ones

or not generated within the time budget).

To increase the likelihood of including the correct patches in the

search space, we propose to work at a fine granularity in terms of

AST nodes. This, however, will further enlarge the search space,

increasing the challenge to find the correct patches. We address the

challenge by devising a strategy to prioritize the candidate patches

based on their likelihood of being correct. Specifically, we study the

use of AST nodes’ context information to estimate the likelihood.

In this paper, we propose CapGen, a context-aware patch gen-

eration technique. The novelty which allows CapGen to produce

more correct patches lies in three aspects: (1) The fine-granularity

design enables it to find more correct fixing ingredients; (2) The

context-aware prioritization of mutation operators enables it to

constrain the search space; (3) Three context-aware models enable

it to rank correct patches at high positions before incorrect plausible

ones. We evaluate CapGen on Defects4J and compare it with the

state-of-the-art program repair techniques. Our evaluation shows

that CapGen outperforms and complements existing techniques.

CapGen achieves a high precision of 84.00% and can prioritize the

correct patches before 98.78% of the incorrect plausible ones.

CCS CONCEPTS

• Software and its engineering→ Error handling and recov-

ery; Software testing and debugging;

KEYWORDS

Context-Aware, Automated Program Repair, Patch Prioritization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180233

ACM Reference Format:

Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, Shing-Chi Cheung. 2018.

Context-Aware Patch Generation for Better Automated Program Repair. In

ICSE ’18: ICSE ’18: 40th International Conference on Software Engineering

, May 27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3180155.3180233

1 INTRODUCTION
A recent study shows that the global cost of general debugging is

312 billion dollars annually and software developers spend 50% of

their time on fixing bugs [6]. The excessively high cost in fixing bugs

motivates the researches on repairing programs automatically. Over

the years, various Automated Program Repair (APR) techniques

have been proposed [16, 19–21, 23–25, 31, 33, 43, 45, 46, 53, 55].

Many of them [16, 19, 20, 29, 36, 45, 46] are known as search-based

APR [17] (which may also be referred to as generate-and-validate

APR [24, 38, 42] or heuristic-based APR [55]). They generate patch

candidates by first applying a predefined set of mutation operators

on the fault space determined by Fault Localization (FL) techniques

[37, 49–51]. They then deploy some heuristics [20, 36] to search

among these candidates for a correct patch that passes all given test

cases [16, 19, 20, 25, 35, 36, 43, 46]. Search-based APR techniques

have shown to be able to fix a wide range of bugs and be scalable

to large programs without requiring extra specifications [20, 27].

Despite their effectiveness, there are two major limitations in ex-

isting search-based APR techniques [16, 20, 21, 36]. First, the correct

patches are not always in the search space, making it impossible

for them to repair bugs successfully. The second limitation arises

from the search space explosion problem [20, 24]. To enhance the

chances of including the correct patches in the search space, increas-

ingly large search spaces (e.g., by using more mutation operators

[16, 19, 23, 24]) are being designed. However, the space enlargement

greatly increases the search efforts and can result in sharp reduction

in repair effectiveness. For example, the large search space results

in generating fewer correct patches due to producing plausible (i.e.,

patches that pass all test cases) but incorrect patches before the

correct ones or budget timeout [24].

Finding good fixing ingredients is vital to resolve the first lim-

itation [4, 30, 53]. Fixing ingredients are those existing code ele-

ments reused to generate fixing patches [30]. Existing approaches

[16, 19, 20, 29, 36, 46] work on Statement level, which are too

coarse-grained to find the correct fixing ingredients since previous

studies have shown that good fixing ingredients exist more often at

a finer granularity than that of statements [4, 30]. This motivates

us to leverage fine-granularity fixing ingredients (e.g., expressions)

1

2018 ACM/IEEE 40th International Conference on Software Engineering

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden M. Wen, J. Chen, R. Wu, D. Hao, and S. Cheung

to generate patches. However, doing so will further increase the

search space and hence aggravate the second limitation. This issue

was also observed by Barr et al. [4] who found that the genetic

programming search algorithm is always bogged down within a

few generations due to the search space explosion when trying

out GenProg [20] with fixing ingredients at the Expression level.

Therefore, better strategies are required to prioritize the search

space derived from fine fixing ingredients.

In pursuit of an efficient search strategy, we analyze the patch

generation process of search-based APR and identify the major

factors contributing to the search-space explosion problem [21].

An APR process typically involves generating three spaces. First,

it selects a buggy location generated by FL techniques (i.e., fault

space). Second, it selects a mutation operator from a predefined

set of operations (i.e., operation space) that can be applied to the

selected buggy location. Third, it selects a fixing ingredient (i.e., in-

gredient space) if it is required by the mutation operator. The ingre-

dient space can be a set of code fragments extracted from the same

application[20, 23, 36, 45] or acrossmultiple applications[41]. There-

fore, the fault space, operation space and ingredient space jointly at-

tribute to the search space explosion problem[21]. Among the three

spaces, the fault space is a set of suspicious code elements, which are

potentially buggy, derived from a given set of test results. It depends

largely on the adequacy of these tests [52, 56]. Following existing

practices, we directly leverage the suspicious values returned by FL

techniques to prioritize the fault space[15, 16, 20, 33, 36, 43, 46, 48].

In this paper, we approach the search space explosion problem

by studying the other two spaces (i.e., operation space and ingre-

dient space), which collectively referred to as the fix space [21].

Specifically, we study how to efficiently search for a correct patch,

if any, in the fix space of a selected suspicious code element. Ex-

isting strategies of search-based APR randomly choose operators

and ingredients from the fix space [16, 19, 20, 27, 36, 46]. However,

this random strategy is inefficient and subject to high possibilities

of producing plausible patches [24, 25, 53]. Therefore, we propose

to prioritize the search for correct patches over plausible but in-

correct ones based on mutation operators’ and fixing ingredients’

likelihood to correctly repair the selected suspicious code element.

We find that the context information of the suspicious code and

the ingredients can provide rich information about their likelihood

to correctly repair the bug. Our finding is supported by our empiri-

cal study showing that the correct fixing ingredients and the buggy

code elements share high similarity in terms of their contexts. Lever-

aging the findings, we develop an approach called CapGen, which

stands for Context-Aware-Patch Generation. CapGen works on a

fine-granularity at the AST node level. It is context-aware in two

aspects. First, the mutation operators are prioritized concerning the

context information. Specifically, CapGen considers the AST node

types of the required ingredient and the suspicious code element

when selecting mutation operators. However, whether bugs can be

fixed more often under certain contexts than the others remains

unknown. To address this challenge, CapGen leverages substantial

real bug fixes in open source projects to guide the discovery of such

contexts. Second, the fixing ingredients are extracted together with

their context information. Specifically, we proposed three models

to capture the context information in terms of the ingredients’ syn-

tactics and semantics. CapGen leverages these models to guide

the application of the ingredients to the correct locations. This is

based on our intuition that a fixing ingredient should be applied

to the locations with similar contexts compared with the location

where it is extracted. To the best of our knowledge, incorporating

the context information when selecting mutation operators and

prioritizing fixing ingredients is new to program repair.

We evaluate CapGen on the Defects4J [14] benchmark. The

evaluation results show that CapGen makes two major accomplish-

ments. First, CapGen generates plausible patches for 25 bugs and

21 of them are correct, thus achieving a high precision of 84.00%. It

outperforms the current state-of-the-art approaches in terms of the

number of bugs repaired correctly and the precision. More specif-

ically, using the context models, the ranks of correct patches has

been improved for 85.31% and the number of ties of the rankings

has been reduced by 97.59% on average. This significantly allevi-

ates the search-space explosion problem. Second, it generates no

incorrect plausible patches for 60.00% (15/25) of the bugs. For those

with incorrect plausible patches generated, the correct patches can

be ranked in prior to 98.78% of the incorrect ones. It is because

that our context-aware models can precisely identify the correct

fixing ingredients and thus reduce the possibility of generating

incorrect plausible patches. This also significantly alleviates the

overfitting problem [42]. Among these 21 bugs correctly repaired,

15 of them have never been repaired by existing APR approaches,

showing that CapGen well complements existing approaches. We

also evaluated CapGen on the IntroClassJava[10] benchmark,

the results of which show the generality of CapGen.

In summary, our paper makes the following novel contributions:

•We propose CapGen, which is a context-aware patch genera-
tion technique. To the best of our knowledge, CapGen is the first

approach to incorporating the context information to prioritize

mutation operators and apply fixing ingredients.

• We design three novel models to capture the context infor-
mation of fixing ingredients. We also present empirical evidences

supporting that the correct fixing ingredients should share high

similarities with the buggy element in terms of their contexts.

•We evaluate CapGen on the benchmark Defects4J. The re-
sults show that CapGen can generate correct patches with a high

precision of 84.00%. Moreover, it outperforms and complements

existing state-of-the-art approaches.

2 BACKGROUND AND MOTIVATION
To address the two aforementioned limitations of search-based APR,

we study the real bug fixes and make some interesting observations

on patch granularities, the operation space and the ingredient space.

• Patch Granularities: We found that one important reason

which hinders existing approaches [16, 20, 29] to generate the cor-

rect patches in the search space is that the designed mutation op-

erators work at the statement level, which are too coarse-grained.

Martinez et al. reported that code redundancy is significantly higher

at a finer granularity than statement level [30]. This suggests that it

is more likely to find good fixing ingredients at a finer granularity.

Figure 1 shows an example, which is a bug caused by a wrong

expression in the return statement at line 417. To fix it, developers

changed the original expression to equals(x,y,1). The fixing
ingredient equals(x,y,1) exists at two other places (line 422 and
line 442) in the same program. If we apply mutation operators at the

2

Context-Aware Patch Generation for Better Automated Program Repair ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

statement level (e.g., replacing the return statement with another)

as existing approaches [16, 19, 20, 29], we cannot fix the bug by

replacing line 417 with line 422 nor line 442. Another example is

shown in Figure 2, where the fixing ingredient next(pos) also
exists at a granularity finer than statements. These motivate us to

extract fixing ingredients and apply mutation operators at a finer

granularity, such as the expression level.

࢛࢚࢘ࢋ࢘ .݈ܾ݁ݑܦ) (ݔ)ܰܽܰݏ݅ && .݈ܾ݁ݑܦ ((ݕ)ܰܽܰݏ݅ || ݔ == :417;ݕ ࢛࢚࢘ࢋ࢘ ,࢞)࢙ࢇ࢛ࢋ ,࢟);417:

࢛࢚࢘ࢋ࢘ .݈ܾ݁ݑܦ) (ݔ)ܰܽܰݏ݅ && .݈ܾ݁ݑܦ ((ݕ)ܰܽܰݏ݅ ||422: ࢙ࢇ࢛ࢋ ,࢞ ,࢟ ;
442: ,࢞)࢙ࢇ࢛ࢋ ,࢟)࢛࢚࢘ࢋ࢘ || .ℎݐܽܯݐݏܽܨ ݕ)ݏܾܽ − (ݔ <= ;ݏ݁

ݕ݃݃ݑܤ // ݐ݊݁݉݁ݐܽݐݏ
// ݀݁ݔ݅ܨ ݐ݊݁݉݁ݐܽݐݏ
// ܶℎ݁ ݏݐ݊݁݅݀݁ݎ݃݊݅ ݎ݂ ݃݊݅ݔ݂݅ ℎ݁ݐ ݃ݑܾ

-
+

Figure 1: Buggy statement, fixed statement and the fixing

ingredients of bug Math 63 in Defects4J.

Applying mutation operators with ingredients at a finer gran-

ularity increases the likelihood to include the correct patches in

the search space [4, 30]. However, a serious side-effect is that it

will increase the fix space (i.e., operation and ingredient space) sig-

nificantly, exacerbating the search space explosion problem [4]. A

recommended way to address this is to prioritize the patches based

on their likelihood to repair a bug correctly as adopted by recent

approaches [19, 53, 55]. We make two key observations on the fix

space from existing literature and the motivating examples, which

shed lights on how to prioritize the search of correct patches.ࢌ ܱ݊݃݊݅ܽܿݏ݁ && ܿ ݐݎܽݐݏ == ܧܱܷܶܳ {421:
422:+ ࢚࢞ࢋ ࢙ ;
423: ࢛࢚࢘ࢋ࢘ ܶ݀݊݁ܽ == ࢛ ? ࢛ ∶ .ܶ݀݊݁ܽ ݀݊݁ܽ ܿ ;// ݀݁ݔ݅ܨ ݐ݊݁݉݁ݐܽݐݏ (݀݁ݐݎ݁ݏ݊݅)
// ܶℎ݁ ݏݐ݊݁݅݀݁ݎ݃݊݅ ݎ݂ ݃݊݅ݔ݂݅ ℎ݁ݐ ݃ݑܾ
170: ࢌ ܿ .ݏ ()ݔ݁݀݊ܫݐ݁݃ == ܴܣܶܵ ிܶெ் {
171: ݐܽ݉ݎ݂ = ݁ݏݎܽ ,݊ݎ݁ݐݐܽ ࢚࢞ࢋ ࢙ ;

ݕ݃݃ݑܤ // ݐ݊݁݉݁ݐܽݐݏ

Figure 2: Buggy statement, fixed statement and the fixing

ingredients of bug Lang 43 in Defects4J.

• Observations on the Operation Space: Insertion, deletion

and replacement are mutation operators commonly used to gen-

erate patches [16, 20, 27, 29, 46]. As revealed by existing studies

[28, 58], the likelihood of repairing a bug is correlated with the

concerned operator and the type1 of the involved code elements.

For instance, insertion can correctly repair a bug more frequently

with a code element of Expression Statement2 than other types

of code elements [58]. In the example in Figure 2, the bug is fixed

by inserting next(pos) as an Expression Statement at line 422.
We further observe that the likelihood of correct bug repairing

is correlated with the context of the involved code elements. Our

observation is in line with a recent finding that the syntactic usage

of code elements is highly contextual [39]. For instance, a switch
statement usually occurs much more often under a while state-
ment than a for statement [39]. Suppose we want to replace the
buggy expression at line 417 in Figure 1 with another compatible

expression (i.e., expressions evaluated as boolean values). There
are many types of ingredients (e.g., Method Invocation, Infix

Expression) that can be evaluated as boolean. However, under
the context of a Return Statement, Method Invocation has a

1Type refers to the AST node type in this study, such as Infix Expression
2https://msdn.microsoft.com/en-us/library/s7ytfs2k.aspx

relatively high probability of 24.4% to be selected as an ingredient

for the returning value and is more than six times higher than that

of type Boolean or Infix Expression [39]. Therefore, expressions

of type Method Invocation should be preferentially selected as

ingredients to fix this bug in a Return Statement.

These motivate us to prioritize the mutation operators using

the context information derived from the AST node type of the

involved fixing ingredient and that of the enclosing code element

where this ingredient is going to be applied. However, how to

select those contexts that can cover as many bugs as possible while

keeping a tractable operation space is a challenge. In this study, we

leverage substantial open source projects to learn those contexts

under which real bugs are frequently fixed, and use such knowledge

to prioritize mutation operators (see Section 3.1).

• Observations on the Ingredient Space:We observe that the

context information of the fixing ingredients can guide us to select

the correct ingredient to the suspicious buggy location. Consider

the return expression at line 417 of the example in Figure 1. Even we

have decided to patch the expression using method invocations as

aforementioned, we still need to select one of the many method in-

vocations in the program to generate a patch. A random selection is

less likely to generate a correct patch. The correct fixing ingredient

exists at two other places in the program. If looking at their contexts

(e.g., the enclosing statements where they are extracted), we can

find that both of them are used in return statements, and there are
no other usages of equals(x,y,1) in this program. Therefore, this
fixing ingredient should be preferentially selected over the others

to patch the buggy return statement at line 417. A similar case is
found for the example in Figure 2. The ingredient next(pos) is
extracted from a statement enclosed by an if statement, and thus
it should be preferentially selected and inserted under the buggy

if statement at line 421.
This motivates us to consider the similarity between the con-

text where an ingredient is extracted and the context where the

buggy code resides when generating patches. An ingredient with a

higher context similarity should be ranked higher. In section 3.2.1,

we propose three models to measure the context similarities in

terms of an ingredient’s and a buggy code’s genealogical struc-

tures, accessed variables and semantic dependencies. To validate if

such measurement can reliably indicate the likelihood of generat-

ing correct patches, we conduct an empirical study to collect the

supporting evidence in Section 3.2.2.

3 APPROACH
We propose a Context-Aware Patch Generation (CapGen) ap-

proach, which works on the Abstract Syntax Tree (AST) of a pro-

gram. Specifically, all the AST nodes in the category of Type, Ex-

pression and Statement [39] are extracted as fixing ingredients.

This section first introduces the context-aware prioritization of

operations and the fixing ingredients. After that, it introduces how

CapGen integrates the fault space, operation space and ingredient

space together to prioritize the generated patches.

3.1 Context-Aware Operators Selection
Motivated by our observations, we consider the three basic AST

mutation operators, which take a fixing ingredient as a source node

and the place (i.e., the buggy code element) where the ingredient is

to be applied as a target node.

3

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden M. Wen, J. Chen, R. Wu, D. Hao, and S. Cheung

1 If Statement 2Infix Expression && []==
3 Block4 ReturnStatement Expression Statement(࢙)࢚࢞ࢋ;

5
1 If Statement 2Infix Expression && []==

3 Block 4 ReturnStatement
Figure 3: The AST differences of the example in Figure 2

• Replacement: replace Target Node (Nt) with Source Node (Ns)

• Insertion: insert Source Node (Ns) under Target Node (Nt)

• Deletion: delete Source Node (Ns) under Target Node (Nt)

The operation space induced by these operators is large [28].

Reduction of the space is a critical issue in APR [21, 24], and we

propose to leverage context information to achieve this. Based on

our observations in Section 2, we explicitly augment a mutation

operator with the context information of the source node’s type and

the target node’s type. Examples of augmented operators are “insert

Simple Name under Method Invocation" and “delete Expression

Statement under Method Declaration". More examples of aug-

mented mutation operators can be found in Table 1. To reduce the

operation space, we identify the probability to correctly fix bugs

for each augmented operator and consider only those operators

that offer a relatively high probability. We derive the probabilities

from the dataset of patches systematically collected by Le Goues et

al. [19]. The dataset contains over 3, 000 real fixing patches from

over 700 open source projects and is public available [1]. For ease

of presentation, we refer to the dataset as BugFixSet in this paper.

For each patch in BugFixSet, we compare the differences between

the buggy and the fixed version at the AST node level. For example,

Figure 3 gives the AST differences for the bug fix (line 421 to 423)

of our motivating example in Figure 2. A node with type Expres-

sion Statement (i.e., node 5) is inserted under the target node

of If Statement (i.e., node 1). The node with type Block is not

considered since it provides little context information for mutation

operation. Note that node 5 is a subtree composed of other nodes

such as Method Invocation (i.e., next) and Simple Name (i.e.,
pos). We regard the operation performed on this subtree as one
repair action [58] since the transformation can be completed in

one single operation (inserting the whole subtree). Therefore, the

augmented mutation operator extracted from this patch is “insert

an Expression Statement under an If Statement".

BugFixSet provides a large and representative repository of real

patches [19], and this enables us to obtain the knowledge of those

augmented mutation operators that are frequently used in real bug

fixes. We count the frequency of each augmented mutation opera-

tors participating in the patches of BugFixSet to approximate its

probability to fix bugs. The higher the frequency, the higher the

probability of fixing real bugs. Table 1 shows the top 10 augmented

mutation operators with the highest frequencies for replacement,

insertion and deletion, respectively. We select only these 30 aug-

mented operators for CapGen to prioritize the operation space.

They cover 69.69% of the repair actions participating in the patches

of BugFixSet altogether. We useM and Freq(M) to denote a se-
lected augmented mutation operator and its frequency, respectively.

For replacement, we utilize the data type (e.g., int, boolean) of a
node, rather than its node type, to infer context information. It is

because that if the data type of a fixing ingredient does not match

that of the target node, the mutated program will not be compiled

correctly. For example, both the data types of the fixing ingredi-

ent (i.e., equals(x,y,1)) and the target node (i.e., the returning
expression) in Figure 1 are boolean.

3.2 Context-Aware Ingredients Prioritization

Existing studies have reported that a significant portion of the fixing

ingredients can be found in the same file of the buggy code [4, 30].

Therefore, we extract the ingredients from the file where the target

node (i.e., the buggy code element) resides. Unlike existing studies

[16, 19, 20, 29, 36, 46], we also extract the context information for

each ingredient. Our hypothesis is that the correct fixing ingredients

should share high similarity with the target nodes in terms of their

contexts. We denote the similarity as Simi(Ns ,Nt). In the following,
we first introduce three aspects of context information embedded

in an AST node and its surrounding codes, and then explain how to

measure the context similarity between two nodes for each aspect.

After that, we validate our hypothesis via an empirical study on the

BugFixSet. Finally, we introduce how to prioritize the ingredients

for the three types of augmented mutation operators.

3.2.1 Extracting Context Information.

We model the context information of an AST node from three

different aspects: genealogy, variable and dependency.

First, a node’s genealogical structure can provide useful con-

text. For instance, the infix expression equals(x,y,1) in Figure
1 is frequently used as the returning value in return statements.
Therefore, this infix expression should have higher probability to be

used as the ingredient for mutating the returning values in Return

Statement than the conditions of If Statement. This information

of where an ingredient is frequently used can be extracted from its

genealogical structures, e.g., the Ancestor Nodes of the node.

Second, variable usages in an ingredient can provide useful con-

text information since variables are primary components of an

ingredient [55]. The example in Figure 1 shows that the fixing in-

gredient uses the same variables (e.g., x, y) as the target expression

to be replaced. Moreover, plausible patches can be generated by

simply removing functionalities via replacing complex expressions

with constant values (i.e., no variable usages). Patches thus gener-

ated might pass a project’s test suite due to the weak test problem

[42]. These motivate us to rank those ingredients with more similar

variable usages compared with the target node at higher positions.

Third, the variables used or defined in a given node are affected

by or can affect other nodes. Such semantic contexts in terms of

the nodes’ dependencies are reported to be helpful in capturing the

characteristics of correct patches [5, 25]. Therefore, CapGen ex-

tracts this dependency information as an aspect of a node’s context

to prioritize fixing ingredients.

•Modeling Genealogy Contexts:

CapGen extracts the genealogy contexts of an AST node N via

checking its Ancestor Nodes to see N is used under what types

of code elements, and checking its Sibling Nodes to see N is used

together with what types of code elements. For ancestor nodes,

we traverse from N to its ancestors until we reach a method dec-

laration. For Sibling Nodes, we extract those nodes of category

Statement and Expression within the same Block ofN . We store
the genealogical information in ϕ, which counts the number of
occurrences of different node types among all the ancestor and

sibling nodes. Algorithm 1 shows the details of this process.

4

Context-Aware Patch Generation for Better Automated Program Repair ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 1: Top replacement, insertion and deletion operators augmented with target and source nodes’ types
Replacement Insertion Deletion

Target Node Freq Source Node Target Node Freq Source Node Target Node Freq
Simple_Name 0.1721 Expression_Statement Method_declaration 0.0815 Simple_Name Method_Invocation 0.0191
String_Literal 0.1310 Simple_Name Method_Invocation 0.0313 Expression_Statement Method_Declaration 0.0157
Infix_Expression 0.0201 Expression_Statement If_Statement 0.0304 Infix_Expression If_Statement 0.0144
Qualified_Name 0.0197 Method_Invocation Method_Invocation 0.0282 Method_Invocation Method_Invocation 0.0144
Conditional_Expression 0.0135 If_Statement If_Statement 0.0141 Expression_Statement If_Statement 0.0072
Simple_Type 0.0082 Infix_Expression Method_Invocation 0.0125 Infix_Expression Method_Invocation 0.0066
Boolean_Literal 0.0075 Qualified_Name Method_Invocation 0.0075 Prefix_Expression Infix_Expression 0.0041
Parameterized_Type 0.0038 Expression_Statement Try_Statement 0.0075 Boolean_Literal Method_Invocation 0.0038
Primitive_Type 0.0009 If_Statement Method_Declaration 0.0063 Expression_Statement Catch_Clause 0.0031
Assignment 0.0003 Boolean_Literal Method_Invocation 0.0047 Method_Invocation Infix_Expression 0.0028

0.3771 0.2240 0.0912

Algorithm 1:Modeling Genealogy Context

input :N: A given node
output :Map ϕ : NodeType �→ Integer: the extracted context information

1 /* encoding ancestor nodes */
2 parent← N
3 while parent � null & parent �MethodDeclaration do
4 if parent � Block then
5 ϕ(GetNodeType(parent)) += 1
6 end
7 parent← GetParentNode(parent)
8 end
9 /* encoding sibling nodes */
10 parent← GetParentNode(N);
11 while parent � Block do
12 parent← GetParentNode(parent)
13 end
14 children← parent.FilterChildrenOfType (Statement | Expression)
15 foreach node ∈ children do
16 ϕ(GetNodeType(parent)) += 1
17 end

When applying a source nodeNs with context ϕS under a target
node with context ϕT , we compute its feasibility via comparing the
similarities f (ϕS ,ϕT) between these two contexts:

f (ϕS ,ϕT) =
∑
t ∈K min(ϕT (t),ϕS (t))

∑
t ∈K ϕT (t) (1)

where K denotes a set of all distinct AST node types captured by

ϕT . Here, Equation 1 measures the proportion of the contexts in
ϕT that can be covered by the contexts of the source node Ns .

•Modeling Variable Contexts:

Given an AST node N , CapGen extracts a set of variables (in-
cluding local variables and fields) that are accessed (i.e., read/write)

in this node, which is denoted as θ . Each of the elements in set θ is
denoted as ϵ , which is a tuple 〈Type, Name〉 recording the data type
and the name of the variable. We use the Jaccard distance to mea-

sure the similarity between the variable contexts of two nodes θT
and θS . Besides, to avoid plausible patches generated by involving
trivial ingredients, we give more weights to those complex ingredi-

ents. Therefore, we use the number of variables involved in Ns to

represent the weight of the ingredient.

д(θS ,θT) = |θS | ∗ |θS ⋂θT |
|θS ⋃θT | . (2)

Two elements are the same only if both the type and the name

are matched. However, for nodes like Simple Name (i.e., variables),

when we replace it with another, their names must be different.

Therefore, we only require the data type is the same for such cases.

•Modeling Dependency Contexts:

Given an AST node N , CapGen extracts its dependency con-
texts via investigating those nodes affecting N and those nodes

affected by N . Specifically, we conduct intra-procedure backward
slicing and forward slicing based on the definition and use (also
known as def-use) of variables extracted from a given node [47].
Lines 2 to 11 in Algorithm 2 describe the details of extracting the

context information by leveraging backward slicing. For each of the

variables used in the node, CapGen slices a set of statements which

affect the values of the variable. We then extract the AST nodes in

these statement that are instances of Expression or Statement

and store such information in a mapψ to count the number of oc-
currences of each node type in the sliced statements. Such context

information is also extracted by leveraging forward slicing.

Algorithm 2:Modeling Dependency Context

input :N: A given node
output :Mapψ : NodeType �→ Integer: the extracted context information

1 /* context information extracted from backward slicing */
2 variableSet← GetUseVariable(N)
3 foreach variable ∈ variableSet do
4 contextStatements← BackwardSlicing(variable)
5 foreach stmt ∈ contextStatements do
6 chs← stmt.FilterChildrenOfType (Statement |Expression)
7 foreach node ∈ chs do
8 ψ (GetNodeType(node)) += 1
9 end
10 end
11 end
12 /* context information extracted from forward slicing */
13 variableSet← GetDeforSetVariable(N);
14 /* forward slicing is conducted the same on variableSet */

The feasibility of applying a source node Ns with dependency

contextψS under a target node with contextψT is similar to howwe
measure the feasibility in terms of the genealogy contexts. Specifi-

cally, we measure the proportion of the target node’ contexts that

can be covered by the contexts of the source node.

f (ψS ,ψT) =
∑
t ∈K min(ψT (t),ψS (t))

∑
t ∈K ψT (t) (3)

where K denotes a set of all AST node types captured byψT .

3.2.2 Empirical Evidences.

We designed three different models to capture the context simi-

larities between the fixing ingredients Ns and the target node Nt .

Our intuition is that the required fixing ingredients are supposed

to share high similarities with the target node to be mutated in

terms of their contexts. To validate the intuition, we collected em-

pirical evidences from the BugFixSet dataset. Among 12.65% of

the bug fixes in BugFixSet, fixing ingredients exist in their asso-

ciated buggy program. This proportion is consistent with existing

empirical studies [4, 30]. For each of these bug fixes, we first ex-

tract the correct fixing ingredient as Ns together with its context

information from the associated buggy program. We then compare

it with the target node Nt at the buggy location for each of the

three aforementioned context models and denote the similarity as

Ss . For comparison, we also randomly select another ingredientNr

whose type is the same as Ns and can also be applied to the target

location. For example, if Ns is a node of Infix Expression with

type boolean, we also randomly select another infix expression
with type boolean whose variables can be resolved at the target
location. This process is similar to the process of selecting ingredi-

ents randomly by existing approaches [16, 20, 36, 38]. We denote

the context similarity between Nr and Nt as Sr . For each bug, we

5

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden M. Wen, J. Chen, R. Wu, D. Hao, and S. Cheung

p−value

 = 2.67e−30

0.3978

0.1187

0.00

0.25

0.50

0.75

1.00

Correct Random

(a) Genealogy

p−value

 = 8.44e−10

0.4556

0.1531

0.00

0.25

0.50

0.75

1.00

Correct Random

(b) Variable

p−value

 = 8.31e−21

0.5211

0.1822

0.00

0.25

0.50

0.75

1.00

Correct Random

(c) Dependency

Figure 4: Comparisons of the contexts similarities between

the correct fixing ingredients and the fixing ingredients

with the same type as the correct one but randomly selected

repeat the random process 50 times, and Sr is the averaged context
similarity value over the 50 runs. We then compare Ss and Sr to
see if Ss is greater than Sr significantly.
Figure 4 shows the results in terms of the genealogy, variable

and dependency context models. Here, for the variable context

model, we only keep the Jaccard term, which measures similarity.

The similarities of all models are normalized to a range from 0 to

1. The results show that for all the three models, the similarity

between Nt and Ns is significantly higher than that between Nt

andNr (p < 0.001) using the one-sided Mann-Whitney U-Test [26].
These results empirically support our intuition that correct fixing

ingredients should share high similarities with the target node in

terms of their context information.

Actually, existing studies have also investigated where to find

fixing ingredients [4, 12, 30]. However, their investigations focus

on finding ingredients at the file level (i.e., in the same file or in

different files) [30] or at the commit level (i.e., in the current version

or in the previous versions) [4]. For example, Barr et al. [4] found

that a significant portion of fixing ingredients exist in the same file.

Our empirical study takes a further step and searches the fixing

ingredients at a finer granularity within the same file (i.e., those

code elements with higher context similarities). In particular, our

findings are also useful for future search-based as well as semantics-

based APR, both of which need to search fixing ingredients in their

patch generation process.

3.2.3 Ingredients Prioritization.

We integrate the three models to prioritize the extracted ingredi-

ents. Those ingredients with higher context similarities (i.e., with a

larger value of Simi(Ns ,Nt)) are ranked higher. However, we have
different treatments to the three different mutation operators. For

replacement, we combine all the three context models, and thus the

Simi(Ns ,Nt) is specifically defined as:
SimiR (Ns ,Nt) = f (ϕS ,ϕT) ∗ f (ψS ,ψT) ∗ д(θS ,θT) (4)

However, for insertion, theNt is the parent node ofNs after insert-

ingNs underNt , and thus it makes no sense to include the variable

model in this case since Nt and Ns serve different functionalities.

The same case for deletion. Therefore, for insertion:

SimiI (Ns ,Nt) = f (ϕS ,ϕT) ∗ f (ψS ,ψT) (5)

For deletion, the case is more complicated since we are going

to delete Ns from Nt . In this case, we first locate the nodes in

the other places No which are identical to Ns . We compute the

context similarity between No and Nt . If there is a high context

similarity betweenNo andNt , which means the source nodeNs is

used in similar contexts at the other places. In this case, we give

lower probability to delete Ns under Nt . Therefore, for deletion,

Simi(Ns ,Nt) is defined as followings specially:
SimiD (Ns ,Nt) = (1 − f (ϕO ,ϕT)) ∗ (1 − f (ψO ,ψT)) (6)

where No ≡ Ns . If there is no other nodes which are identical to

Nt , then Simi(Ns ,Nt) would simply be 1.
3.3 Patch Prioritization

In summary, to generate candidate patches, CapGen first selects

a buggy node Nt , prioritized by its suspicious value FL(Nt) gen-
erated by FL techniques. Note that existing FL techniques assign

suspicious values at the line level, CapGen applies these FL tech-

niques by assigning a line’s suspicious value to each of its AST

nodes in the same line. The suspicious value of those AST nodes

(e.g., If Statement) that span across multiple lines are averaged

over these lines. Then, for the selected Nt , CapGen selects a set of

mutation operators that can be applied to Nt , and each mutation

operatorsM has the corresponding operation probability Freq(M)
by considering the contexts of Nt . Afterwards, CapGen priori-

tizes all compatible source nodesNs , which are used as ingredients

required byM, based on their context similarity Simi(Ns ,Nt) com-
pared with the target node Nt . Finally, patches are generated, and

each of them is denoted as P = 〈Nt ,M,Ns 〉. CapGen prioritizes
those patches by integrating the fault space, the operation space

and the ingredient space together. The final score of P is denoted as
Score(〈Nt ,M,Ns 〉), which is calculated as shown in Equation 7.

Score(〈Nt ,M,Ns 〉) = FL(Nt) ∗ Freq(M) ∗ Simi(Ns ,Nt) (7)

Currently, we use multiplication to combine all the models to filter

out those patches generated with ingredients sharing no context

similarities. Designing different ways to combine those components

together is left for future work as discussed in Section 5.1.

4 EVALUATION
4.1 Research Questions

We implemented CapGen in Java based on a code transformation

library Spoon [34] and the fault localization tool GZoltar [2]. Specif-

ically, CapGen leverages GZoltar with the algorithm Ochiai [37] to

retrieve the fault space and the suspicious values. We use the pro-

gram analysis tool Understand [3] for code slicing. Our experiments

are run on a CentOS server with 2x Intel Xeon E5-2450 Core CPU

@2.1GHz and 192GB physical memory. We set the time budget for

each bug as 90 minutes following existing practices [16, 19]. Our

evaluation aims to answer the following research questions:

• RQ1: How effectively does CapGen fix real world bugs?

• RQ2: Can CapGen outperform existing approaches?

• RQ3: How is the contribution of each model used by CapGen?

The implementation of CapGen and the details of our evaluation

results are publicly available at:

https://github.com/justinwm/CapGen.

4.2 The Subject Programs

To answer the three RQs, we runCapGen on the benchmark datasets

for program repair: Defects4j [14]. The benchmark was built to

facilitate controlled experiments in software debugging and testing

researches [14], which has been widely adopted by recent studies

on APR[19, 27, 29, 40, 54]. Following existing practices [27, 40, 53],

we use Defects4J of version 1.0.1 and exclude the Closure Compiler

6

Context-Aware Patch Generation for Better Automated Program Repair ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 2: Subjects for evaluation

Subject #Bugs KLOC Test KLOC #Test Cases
Commons Lang 65 22 6 2,245
JFreeChart 26 96 50 2,205
Commons Math 106 85 19 3,602
Joda-Time 27 28 53 4,130

Total 224 231 128 12,182

project because it uses a customized testing format instead of JUnit

test [53]. As a result, four projects with a total of 224 real bugs

are used as subjects for experiment. Their demography is given

in Table 2. Evaluations on another benchmark IntroClassJava

[10, 22] are also conducted (see discussion in Section 5.2).

4.3 RQ1: Performance of CapGen on Real Bugs

To answer RQ1, we apply CapGen to the Defects4j benchmark.

For each bug, we validate the generated patches prioritized by their

Score(〈Nt ,M,Ns 〉) one by one. We first run the failing test cases
to see if they pass on the generated patch. If so, we then run the

regression test cases to see whether this patch introduces new bugs.

We skip to validate the next patch otherwise. CapGen keeps gener-

ating and validating the candidate patches within the time budget.

After all the patches have been validated or the budget timeout,

we collect the plausible patches which pass both the failing test

cases and the regression test cases. We then manually analyze these

patches to see if they are semantically equivalent to the patches

submitted by developers. We mark them as correct patches if they

are, and incorrect plausible patches otherwise.

CapGen generates plausible patches for 25 bugs in total among

all the 224 bugs. We identify the correct patches for 22 of these

25 bugs successfully. Table 3 shows the details of these 22 bugs.

Column Tot shows the number of the patches generated while

Crt shows the number of the correct ones among them. The total

number of patches generated is affected by the size of the fault space

and the size of buggy source file (since more fixing ingredients will

be extracted if the buggy source file is larger and contains more

statements). There are cases that CapGen generates more than one

correct patch. For example, CapGen generates 2 correct patches

for Math 53, which requires inserting a statement to fix the bug.

We find that both the two patches are equivalent to the developers’

patch since the required statement can be inserted at two adjacent

places. Columns Rank and Tie in Table 3 show the rank of the first

correct patch and the number of patches, including wrong patches

(i.e., those did not pass the test suite) and plausible patches, that are

ranked in tie with the first correct patch respectively. The value of

Rank is the rank of the first position if there are ties. Column Time

shows that the time required for CapGen to generate the correct

patches ranges from 0.18 to 50.32 minutes. Columns P-B, P-T and

P-A show the number of incorrect plausible patches grouped by

their relative ranks (i.e., before, in tie with and after) compared with

the correct patches. We can see that CapGen generates incorrect

plausible patches for 40.00% (10/25) of the bugs. However, even

though CapGenmight generate incorrect plausible patches, it ranks

them mostly after the correct ones. Table 3 shows that 21 out of

the 22 bugs, CapGen ranks no incorrect plausible patches before

or in tie with the first correct patches. The only exception is Math

80, for which CapGen generates two incorrect plausible patches

that are ranked before the first correct patch.

Table 3: Performance of CapGen on Defects4J

Project Bug Id Crt Tot Rank Tie P-B P-T P-A Time
Chart 1 1 503 99 0 0 0 0 5.89
Chart 8 1 731 5 4 0 0 47 0.37
Chart 11 1 105 27 0 0 0 0 7.48
Chart 24 1 179 14 0 0 0 0 0.99
Lang 6 2 771 216 0 0 0 0 10.93
Lang 26 1 5,094 371 0 0 0 0 50.32
Lang 43 3 438 9 1 0 0 1 5.96
Lang 57 3 18,370 30 0 0 0 0 5.78
Lang 59 1 986 59 0 0 0 19 1.74
Math 5 1 1,166 150 0 0 0 3 5.33
Math 30 1 669 172 0 0 0 0 6.18
Math 33 1 9,412 43 10 0 0 0 21.51
Math 53 2 553 129 1 0 0 0 11.06
Math 57 1 421 78 0 0 0 0 19.07
Math 58 1 1,104 456 0 0 0 0 27.74
Math 59 1 225 9 0 0 0 0 4.61
Math 63 1 463 4 3 0 0 8 2.17
Math 65 1 31,152 3 2 0 0 0 0.18
Math 70 1 262 23 0 0 0 0 3.02
Math 75 1 464 7 2 0 0 0 0.85
Math 80 1 69,252 221 35 2 0 81 22.86
Math 85 1 566 3 0 0 0 3 3.42
Crt denotes the number of correct patches. Tot denotes the total number of
patches generated. Rank is the rank of the first correct patch. P-B, P-T and P-A
denotes the number of the plausible patches that are ranked before,in tie with
and after the first correct patch respectively. Time stands for the time required to
find the first correct patch inminutes.

For the 21 correctly repaired bugs, 90.48% of them require a fixing

granularity finer than the statement level. Examples are given in

Figures 1 and 5. Some of the cases requiring fixing ingredients

with finer granularities can be handled by specifically designed

mutation operators. For example, for bug Chart 1, by replacing the

infix expression dataset!=null with another dataset==null,
CapGen can repair it. HDRepair also repaired it by including a

mutation operator that negates boolean expressions [19]. Currently,

CapGen includes 30 augmented mutation operators, and seven of

them can repair at least one bug correctly.

These results show the effectiveness of CapGen. Specifically, it

repairs 21 bugs successfully (i.e., the first patch passing all tests

is correct) and achieves a high precision of 84.00% (21/25), which

outperforms the existing state-of-the-art approach ACS [53] with a

precision of 78.30%. Precision is vital for APR techniques because

much debugging effort would be wasted if the provided patches

are plausible but incorrect [53]. This high precision is achieved via

patch prioritization guided by our context-aware models. Specifi-

cally, 98.78% (164/166) of the incorrect plausible patches are ranked

after the correct ones (see Section 4.5 for detailed analysis).

4.4 RQ2:Comparison with Existing Approaches

We compare CapGenwith fiveAPR approaches, ACS [53], HDRepair

[19], jGenProg [27], Nopol [54] and PAR [16, 19], which have been

evaluated on the Defects4j benchmark within our knowledge.

Among them, ACS [53] and HDRepair [19] are the state-of-the-

art approaches. Similar to CapGen, HDRepair [19] and PAR [16]

set the time budget as 90 minutes. Nopol [54] and jGenProg [27]

set the searching time as 3 hours. ACS [53] sets the budget as 30

minutes since it only targets at condition synthesis and thus the

corresponding search space is much smaller. Table 4 shows the

comparison results. The baselines’ results are directly extracted

from existing literature [16, 20, 53, 54]. Compared with these tech-

niques, CapGen outperforms all of them in terms of the number

7

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden M. Wen, J. Chen, R. Wu, D. Hao, and S. Cheung

Table 4: Comparisons with existing tools on Defects4J

Project CapGen HDRepair jGenProg PAR ACS Nopol
Chart 4 2/2 0/0 0/- 2/0 1/0
Lang 5 3/2 0/0 1/- 3/0 3/0
Math 12 4/2 5/3 2/- 12/2 1/1
Time 0 1/0 0/0 0/- 1/0 0/0
Total 21 10/6 5/3 3/- 18/2 5/1

Precision 84.0% 56.5% 18.5% - 78.3% 14.3%

X/Y: X is the number of bugs repaired by the approach; Y is the number of bugs
that repaired by CapGen and also by the approach. ‘-’ means the results are not
available due to the PAR did not present the ID of the repaired bugs.

of correctly repaired bugs and precision. By analyzing the overlap

of repaired bugs between CapGen and the compared techniques,

CapGen actually complements the-state-of-art techniques. 15 of the

21 bugs repaired by CapGen have never been repaired by existing

approaches [16, 19, 20, 53, 54].

Six of the 21 bugs repaired by CapGen can be repaired by the

state-of-the-art search-based approach HDRepair [19]. This hap-

pens when the required fixing ingredient is at the statement level

(e.g., Math 53) or can be handled by specific designed mutation

operations (e.g., Chart 1). The dominant reason why CapGen can

repair 15 new bugs is that CapGen works at a finer granularity (e.g.,

Figure 2). For the 4 bugs that can be fixed by HDRepair [19] but

not CapGen, the major reason is that the fixing ingredients do not

exist in our searching scope. For example, for Math 34, the correct

fix is to replace the method invoking expression chromosimes in
chromosomes.iterator() with getChromosomes(). However,
the fixing ingredient getChromosomes() does not exist in the
buggy program, and thus CapGen failed to repair the bug. To han-

dle this case, HDRepair [19] designed a mutation operator that

replaces the name of a method call (or a method invoking expres-

sion) by another method name (or expression) with compatible

types. By including more mutation operators or increasing the

scope to extract fixing ingredients, CapGen can handle more cases

(see Section 5.1 for more discussions).࢚ ݆ = 4 ∗ ݊ − 1;1135:

ࢌ (1.5 ∗ [݃݊ܲ݃݊݅]݇ݎݓ <]݇ݎݓ ∗) −) + :1133([݃݊ܲ݃݊݅
ࢋ࢈࢛ࢊ:941 ݀ =]݇ݎݓ ∗) −) + ;[݃݊ܲ݃݊݅

ݕ݃݃ݑܤ // ݐ݊݁݉݁ݐܽݐݏ
// ݀݁ݔ݅ܨ ݐ݊݁݉݁ݐܽݐݏ

// ܶℎ݁ ݏݐ݊݁݅݀݁ݎ݃݊݅ ݎ݂ ݃݊݅ݔ݂݅ ℎ݁ݐ ࢚݃ݑܾ ݆ = ∗) −);1135:

Figure 5: Buggy statement, fixed statement and the fixing

ingredients of bug Math 80 in Defects4J.

Comparing with ACS [53], CapGen can repair 19 different bugs.

This is because ACS only targets at synthesizing predicate con-

ditions, and thus other bugs in general are out of the repairing

capabilities of ACS. For instance, our motivating example shown

in Figure 1 which replaces the return value of another expression.

Another motivating example in Figure 2 can not be repaired by ACS

neither, which is an omission bug and requires inserting a method

invocation to repair it. Actually, these kind of bugs can hardly

been repaired successfully by ACS, as well as semantics-based APR

[23, 32, 33, 53], since they mainly focus on synthesizing conditions

or right-hand side of assignments. This embodies the indispensabil-

ity of search-based APR in program repair which targets at fixing

bugs in general. We also notice that CapGen successfully repaired

two bugs that can be repaired by ACS which are caused by wrong

conditions. For example, by replacing the condition in if (fa *
fb >= 0.0) with fa * fb > 0.0, CapGen can repair Math 85.

0

200

400

600

800

FL FL&MO GC DC VC GC&DC GC&VC DC&VC Context
Rank Tie

67.23%

4.57%

87.58%

61.82%

84.84%

65.98%

46.97%

42.70%

92.48%

71.08%
96.18%

78.40%
96.30%

81.67%

97.59%

ݏ݈݅ܽݐ84.31%݀݁ ݏ݊݅ݐܽݑ݈ܽݒ݁ ݂ ݁ܽܿℎ ݐݔ݁ݐ݊ܿ ݈݁݀݉ ݕܾ ܾ݃݊݅݉ܿ ℎݐ݅ݓݐ݅ ,ܱܯ&ܮܨ ℎ݁ݐ ݏݐ݊݁݉݁ݒݎ݉݅ ݁ݎܽ ݀݁ݎܽ݉ܿ ℎݐ݅ݓ ܱܯ&ܮܨ

(GC&DC&VC)

Figure 6: The average rank of first correct patch.

The same case for Chart 1. However, CapGen requires the existence

of the fixing ingredients in the program. Those cases whose fixing

ingredients do not exist in the program might be handled by ACS.

4.5 RQ3: Contributions of Each Model

We use the average results of the 22 bugs shown in Table 3 to

answer this question. Specifically, we conducted nine experiments

to examine the contribution of each component of CapGen. Figure

6 shows the results. Each bar has two heights. The white part

indicates the first correct patch’s average rank, and their height

difference (gray colored) gives the number of other patches that are

ranked in tie with the correct one. In the first setup, we use only

the suspicious value of the fault space (i.e., FL(Nt)) to rank all the
patches generated. All mutation operators, which are denoted as

MO, bear the same weights, and no context models are considered.

In the second setup, we study the prioritization performance with

the mutation operators’ weights combined (i.e., FL(Nt) ∗ Freq(M)).
In the remaining seven setups, we evaluate the contribution of

each of our context models and their combinations one by one.

Specifically, we integrate a single context model to the final ranking

(i.e., GC for Genealogy Context, DC for Dependency Context and

VC for Variable Context) and the arbitrary combinations of them. In

Figure 6, bars from position 3 to 9 show the results by combining the

context models with FL and MO (e.g., VC means CapGen leverages

FL, MO and the VC model to produce the final ranking).

As shown in Figure 6, each individual model contributes to im-

prove the rank of correct patches. If we use only the FL model, the

patches are simply ranked by the suspicious values of the buggy lo-

cations return by GZoltar. Due to inadequacy of test cases [42], the

ranking of the correct buggy location is low and contains many ties.

Besides, many possible patches can be generated for each location.

These two reasons account for the poor ranks (e.g., , the low rank

and many ties) of the correct patches. By combining the weights

of the mutation operators, CapGen can significantly break the ties

and reduce the number of ties by 67.23%. The performance of the

first rank has also been improved by 4.57%. By further introducing

all the context models of fixing ingredients, the rank is further

improved by 84.31% and the number of ties are further reduced

by 97.59% with respect to the ranking of using FL(Nt) ∗ Freq(M).
Let us illustrate this using the bug shown in Figure 5. The buggy

expression is in an Assignment under an If Statement (line 1133).

The correct fixing ingredient also exists in an Assignment and a

condition expression in an If Statement. By capturing such con-

text information, we can prioritize the correct fixing ingredients at

high positions. Specifically, the correct patch is ranked at 6758 with

3767 ties if only the FL model is used. By including the MO model,

it can be ranked at 5807 with 1002 ties. By including all the three

8

Context-Aware Patch Generation for Better Automated Program Repair ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

0

50

100

150

200

FL FL&MO GC DC VC GC&DC GC&VC DC&VC Context

Before Tie After
(GC&DC&VC)

Figure 7: Total number of plausible patches

context models, it can be ranked at 221 with 35 ties, which can be

searched within 30 minutes. For the rankings of each individual

model and the combinations of them, the improvement is computed

against the ranking of using FL(Nt) ∗ Freq(M). The results show
that the three models collectively achieve the best performance,

followed by the combination of the two models of DC and VC.

Another crucial function of our context-ware models is that they

can prioritize the correct patches before the incorrect plausible

ones. The majority of the patches generated which pass all test

cases are plausible but incorrect due to the weak tests provided

[42, 52, 56]. Previous techniques [16, 19, 20, 29, 36, 46] use random

techniques to search among these generated patches, and therefore,

they are more likely to produce the incorrect plausible patches

[38]. This problem can be significantly alleviated by prioritizing the

patches using our context models. Figure 7 shows the distributions

of the total number of incorrect plausible patches ranked before,

in tie with and after the correct patches under the nine analyses.

The use of FL model alone in the first analysis leads to 80.69% of

the incorrect plausible patches generated being ranked in tie with

or before the first correct one. The number has been reduced by

17.18% by introducing the MO model, and 98.52% in a further step

by combining our context models. Finally, only 2 plausible patches

are ranked before or in tie with the correct ones. We also present

the results in detail for each of our context model. For example,

by integrating the GC, DC and VC model alone can reduce the

number by 82.22%, 80.74% and 34.07% respectively comparing with

the results generated by leveraging FL and MO.

Let us further illustrate the effectiveness of our context models

by case analysis. For our motivating example shown in Figure 1,

CapGen can rank the correct patch at position 4 before all other 8

plausible bugs. Replacing the variable x in the function isNaN(x)
with field MathUtils.TWO_PI is one example of incorrect plau-
sible patches. However, due to the low context similarity shared

by x and MathUtils.TWO_PI, the final probability of this patch
is only 4.97-e4, and thus ranked after the correct patch. Replacing
Double.isNaN(x) && Double. isNaN(y)with expression x==0
can also pass the test suite. However, our variable context model

favors those ingredients which involve more similar variables with

the target node. Therefore, this patch is also ranked after the correct

one. Similar cases for the other bugs.

CapGen fails to rank the correct patch before all incorrect plau-

sible ones for Math 80 shown in Figure 5. Due to weak test cases

provided, 81 incorrect plausible patches have been generated and 78

of them are ranked after the correct one using our context models.

However, there are still 2 exceptions. For example, replacing the

variable n at line 1135 with another variable pingPong can pass all
the test cases, and CapGen fails to rank this one after the correct

patch. It is because these two variables are used together a lot in the

program and thus sharing a high context similarity. Besides, our

variable context model can not filter out the rank of this patch since

it only requires their types to be the same if both the ingredient

and the target node are Simple Name as described in Section 3.2.1.

These results show that each of our proposed model can help

rank the correct patches at top positions and, more importantly,

before the incorrect plausible ones.

5 DISCUSSIONS
5.1 On the Extensions of CapGen
CapGen performs a single mutation to generate patches, which

indicates CapGen can only target at fixing those bugs requiring a

single repair action currently. However, this type of bugs is common

in practice [28, 58]. For example, a existing study found that around

30% of the bugs can be fixed by a single repair action [58]. In the

Defects4J benchmark, 31.70% of the bugs (71/224) can be repaired

by a single repair action. Note that, patches generated via a simple

repair action might also be complex. For example, CapGen inserts

a whole If Statement, which across three lines, to fix bug Math

53. In the future, we will include performing mutations at multiple

places in CapGen . At the same time, we will also try to reduce the

increase of the search space that it incurs. One possible direction is

to perform the same operation at multiple buggy target nodes simul-

taneously in the fault space if they are identical to each other. For

example, an buggy expression return isZero?NaN:INF exists at
multiple places for Math 46, repairing this bug requires changing

all these buggy expressions to the correct ones.

In the future, we also plan to include more mutation operators to

increase the chances of repairing more bugs, which could be easily

integrated by design. Furthermore, CapGen currently searches

only in the same program file where the target node resides to find

fixing ingredients. Among the 71 bugs which require only one repair

action, only 27 of them whose all required fixing ingredients can

be found in the same program. Therefore, extending the searching

scope is a promising extension for CapGen, which can increase the

chances to find the correct fixing ingredients for more bugs [30].

For example, if we search among the whole application, we can find

the ingredients for two more bugs among the 71 bugs. However,

including more mutation operators and enlarging the scope to

search the ingredients will inevitably increase the search space and

thus make it more challenge to identify the correct patch. Therefore,

better searching strategies are desired. Currently, CapGen combines

FL, MO and the three context models by multiplication to prioritize

the search space. In the future, CapGen will try better strategies

such as learning-to-rank techniques to integrate these models.

5.2 Threats to Validity
One potential threat to validity is the generality of the benchmark

Defects4J, which means that our evaluation results may not be

generalized to other dataset. We planed to use BugFixSet for cross

validation. However, it only provides the patch for each bug with-

out the corresponding test cases. Therefore, it makes it impossible

to validate the correctness of the patches generated by CapGen

automatically. The other benchmark in Java besides Defects4J is

IntroClassJava [10, 22] within our knowledge. To alleviate the

threat of generality, we also evaluated CapGen on this benchmark.

IntroClassJava is the Java version of the IntroClass benchmark

9

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden M. Wen, J. Chen, R. Wu, D. Hao, and S. Cheung

originally proposed by Le Goues et al. [22]. This benchmark con-

tains 297 bugs from student-written homework assignments. These

bugs feature complicated fixes although they are small programs

[55]. We follow exiting techniques [18, 57] to check whether a gen-

erated patch is correct. We run CapGen on this benchmark and

found that it can successfully repair 25 bugs in total. The state-of-

the-art semantics-based APR techniques, JFix [18] and Angelix [32],

which work on the IntroClassJava benchmark, are able to repair

19 and 7 bugs respectively [18]. Specifically, CapGen can repair 14

new bugs. It is because neither Angelix nor JFix can handle floating

point or strings related bugs [55] limited by the capability of the

constraint solving techniques. Therefore, they have only evaluated

on a subset of the IntroClassJava benchmark which only includes

integer and boolean-related fixes. CapGen has no such limitations

and are evaluated on the whole dataset. This result also shows that

CapGen complements well to existing approaches.

Besides, CapGen is designed independent of the dataset used for

evaluation. Specifically, themutation operators are prioritized based

on substantial real bug fixes extracted from open source projects.

For the three context models proposed to prioritize the ingredients,

we conduct an empirical study and the results shows that the correct

fixing ingredients indeed share high context similarity with the

target nodes measured by our models. This finding is general, and

can facilitate the design of selecting fixing ingredients for both

search-based and semantics-based APR techniques in the future.

6 RELATEDWORK
Automated program repair techniques can be broadly classified

into two categories. The first category is search-based APR [16, 19,

20, 36, 38, 43, 45, 46]. The most representative of this category is

GenProg [20, 46], which searches for correct patches via genetic

programming algorithm. RSRepair [36] adopts the same fault space

and operation space as GenProg. It differs from GenProg in that

it searches among all the candidates randomly instead of using

genetic programming. Reducing the number of candidate patches

and reducing the test cases required for validating a patch are two

important aspects to boost the efficiency of search-based APR tech-

niques [11]. Motivated by this, AE [45] is proposed to reduce the

total cost required to find a correct patch. In order to generate candi-

dates that are more likely to be the correct patch, PAR [16] proposes

to leverage fixing templates learned from human patches to gen-

erate possible candidates. Each template is able to fix a common

type of bugs. The design of mutation operators of CapGen is also

guided by substantial real bug fixes. However, CapGen only lever-

ages the syntactic information to design the mutation operators

(i.e., inserting a type of code element under another type of code

element). PAR designs mutation operators considering the seman-

tic information such as adding a null pointer checker. Designing

with such specific information makes PAR less generalizable than

CapGen. The most recent work is HDRepair [19], which leverages

historical data to search for correct patches.

The second category is semantics-based APR, which synthe-

sizes a repair patch directly using semantic information via sym-

bolic execution and constraint solving [9, 13, 15, 31–33, 44, 54].

Staged Program Repair (SPR) [23] is a hybrid of search-based and

semantics-based automated program repair technique. It leverages

traditional mutation operators to generate candidate patches [8],

and it is also capable of synthesizing conditions via symbolic exe-

cution. Prophet [25] was proposed based on SPR, which is capable

of prioritizing candidate patches via learning from correct patches

automatically using machine learning techniques. SPR and Prophet

only synthesize program elements involving conditions. Nopol is

also capable of synthesizing conditions [54]. SemFix [33] is capable

of synthesizing right hand side of assignments besides conditions.

Angelix [32] was proposed to address the scalability issue concern-

ing semantics-based techniques using a novel lightweight repair

constraint angelic forest. S3 was recently proposed to synthesize

patches leveraging program-by-examples techniques [55].

Both search-based APR and semantics-based APR techniques

have their advantages and disadvantages. Search-based APR is sim-

ple, intuitive and generalizable to fix all types of bugs, which make

them more effective. However, the efficiency is greatly compro-

mised by the search space explosion problem [24]. On the other

hand, semantics-based APR is more effective since the search space

is more tractable by using program synthesis with restricted compo-

nents. However, the effectiveness could be limited by the capability

of constraint solving and program synthesis. Besides, both of these

two categories suffer from the overfitting problem [42, 52].

In order to generate high-quality patches, many approaches

propose to rank the patches based on their likelihood to be correct

recently [7, 19, 25, 31, 53, 55]. HDRepair prioritizes patches based

on their similarities with previous fix patterns that are mined from

software histories [19]. Prophet [25] also compares the generated

patch with existing human patches to investigate its probability

of being correct but leverages different features as HDRepair [19].

ACS leverages the information mined from other projects and Java

documentations to prioritize the variables and predicates used in

the synthesized conditions [53]. S3 prioritizes the generated patches

by comparing their similarities with the original buggy program in

terms a set of features [55]. Different from them, CapGen directly

leverages the context information extracted from the buggy code

elements and the fixing ingredients to prioritize the generated

patches. To the best of our knowledge, incorporating the context

information of fixing ingredients is new to program repair.

7 CONCLUSION
We present a novel search-based APR technique, CapGen, which

works on the AST node level to increase the chances of including

the correct patches in the search space. The key novelty of Cap-

Gen which allows it to generate and search the correct patches

efficiently is that the patch generation process is context-aware,

specifically, in the following two aspects: 1). Themutation operators

are prioritized considering the context information guided by large

historical data. 2). Fixing ingredients are extracted together with

their context information, and such information is leveraged to pri-

oritize the generated patches. We evaluate CapGen on Defects4J,

and the results show that CapGen outperforms and complements

existing state-of-the-art techniques. More importantly, CapGen can

achieve a precision of 84.00% and can prioritize the correct patches

in prior to 98.78% of the plausible but incorrect ones.

ACKNOWLEDGMENTS
The work was supported by the Hong Kong RGC/GRF Grant No.

16202917, the MSRA Collaborative Research Award, and the Na-

tional Natural Science Foundation of China under Grant No. 61522201.

10

Context-Aware Patch Generation for Better Automated Program Repair ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] 2017. https://github.com/xuanbachle/bugfixes. (2017). Accessed: 2017-03-22.
[2] 2017. http://www.gzoltar.com. (2017). Accessed: 2017-03-22.
[3] 2017. Understand. https://scitools.com. (2017). Accessed: 2017-03-22.
[4] Earl T Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica Sarro.

2014. The plastic surgery hypothesis. In FSE’14. ACM, 306–317.
[5] Marcel Böhme, Ezekiel Olamide Soremekun, Sudipta Chattopadhyay, Emamurho

Ugherughe, and Andreas Zeller. 2017. Where is the Bug and How is it Fixed? An
Experiment with Practitioners. In ESEC/FSE’2017 (ESEC/FSE 2017). 1–11.

[6] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer Katzenellenbo-
gen. 2013. Reversible debugging software. Judge Bus. School, Univ. Cambridge,
Cambridge, UK, Tech. Rep (2013).

[7] Loris DâĂŹAntoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program
repair with quantitative objectives. In International Conference on Computer Aided
Verification. Springer, 383–401.

[8] Vidroha Debroy andW EricWong. 2010. Using mutation to automatically suggest
fixes for faulty programs. In 2010 Third International Conference on Software
Testing, Verification and Validation. IEEE, 65–74.

[9] Favio DeMarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. 2014.
Automatic repair of buggy if conditions and missing preconditions with smt. In
Proceedings of the 6th International Workshop on Constraints in Software Testing,
Verification, and Analysis. ACM, 30–39.

[10] Thomas Durieux and Martin Monperrus. 2016. IntroClassJava: A Benchmark of
297 Small and Buggy Java Programs. Ph.D. Dissertation. Universite Lille 1.

[11] Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. 2009.
A genetic programming approach to automated software repair. In GECCO’2009.
ACM, 947–954.

[12] Mark Gabel and Zhendong Su. 2010. A study of the uniqueness of source code.
In FSE’10. ACM, 147–156.

[13] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. 2011. Automated
atomicity-violation fixing. In ACM SIGPLAN Notices, Vol. 46. ACM, 389–400.

[14] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of
existing faults to enable controlled testing studies for Java programs. In ISSTA’2014.
ACM, 437–440.

[15] Yalin Ke, Kathryn T Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing
programs with semantic code search (T). In ASE’2015. IEEE, 295–306.

[16] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In ICSE’2013. IEEE Press,
802–811.

[17] Xuan-Bach D Le. 2016. Towards efficient and effective automatic program repair.
In ASE’2016. ACM, 876–879.

[18] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. JFIX: semantics-based repair of Java programs via symbolic PathFinder. In
ISSTA’17. ACM, 376–379.

[19] Xuan Bach D Le, David Lo, and Claire Le Goues. 2016. History Driven Program
Repair. In SANER’2016, Vol. 1. IEEE, 213–224.

[20] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A systematic study of automated program repair: Fixing 55 out of 105 bugs
for 8 each. In ICSE’2012. IEEE, 3–13.

[21] Claire Le Goues, Stephanie Forrest, andWestleyWeimer. 2013. Current challenges
in automatic software repair. Software Quality Journal 21, 3 (2013), 421–443.

[22] Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass benchmarks for automated repair of C programs. IEEE Transactions
on Software Engineering 41, 12 (2015), 1236–1256.

[23] Fan Long and Martin Rinard. 2015. Staged program repair with condition syn-
thesis. In FSE’2015. ACM, 166–178.

[24] Fan Long and Martin Rinard. 2016. An analysis of the search spaces for generate
and validate patch generation systems. In ICSE’2016. ACM, 702–713.

[25] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning
correct code. In ACM SIGPLAN Notices, Vol. 51. ACM, 298–312.

[26] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of
mathematical statistics (1947), 50–60.

[27] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. 2016. Automatic repair of real bugs in Java: A large-scale experiment
on the Defects4J dataset. Empirical Software Engineering (2016), 1–29.

[28] Matias Martinez and Martin Monperrus. 2015. Mining software repair models for
reasoning on the search space of automated program fixing. Empirical Software
Engineering 20, 1 (2015), 176–205.

[29] Matias Martinez and Martin Monperrus. 2016. ASTOR: A Program Repair Library
for Java. In Proceedings of ISSTA, Demonstration Track.

[30] Matias Martinez, Westley Weimer, and Martin Monperrus. 2014. Do the fix
ingredients already exist? an empirical inquiry into the redundancy assumptions
of program repair approaches. In Companion Proceedings of the 36th International
Conference on Software Engineering. ACM, 492–495.

[31] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. Directfix: Looking
for simple program repairs. In ICSE’2015, Vol. 1. IEEE, 448–458.

[32] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In ICSE’2016. ACM,
691–701.

[33] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: program repair via semantic analysis. In ICSE’2013. IEEE Press,
772–781.

[34] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. 2015. Spoon: A Library for Implementing Analyses and Transforma-
tions of Java Source Code. Software: Practice and Experience 46 (2015), 1155–1179.
DOI:http://dx.doi.org/10.1002/spe.2346

[35] Jeff H Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, and others. 2009. Automatically patching errors in deployed soft-
ware. In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. ACM, 87–102.

[36] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The
strength of random search on automated program repair. In ICSE’2014. ACM,
254–265.

[37] Yuhua Qi, XiaoguangMao, Yan Lei, and ChengsongWang. 2013. Using automated
program repair for evaluating the effectiveness of fault localization techniques.
In ISSTA’2013. ACM, 191–201.

[38] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of patch
plausibility and correctness for generate-and-validate patch generation systems.
In ISSTA’2015. ACM, 24–36.

[39] Dong Qiu, Bixin Li, Earl T Barr, and Zhendong Su. 2017. Understanding the
syntactic rule usage in java. Journal of Systems and Software 123 (2017), 160–172.

[40] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do Automatically Generated Unit Tests Find Real Faults? An
Empirical Study of Effectiveness and Challenges (T). In ASE’2015. IEEE, 201–211.

[41] Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, andMartin Rinard. 2015. Au-
tomatic error elimination by horizontal code transfer across multiple applications.
In ACM SIGPLAN Notices, Vol. 50. ACM, 43–54.

[42] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure
worse than the disease? overfitting in automated program repair. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM,
532–543.

[43] Shin Hwei Tan and Abhik Roychoudhury. 2015. relifix: Automated repair of
software regressions. In ICSE’2015. IEEE Press, 471–482.

[44] Yi Wei, Yu Pei, Carlo A Furia, Lucas S Silva, Stefan Buchholz, Bertrand Meyer, and
Andreas Zeller. 2010. Automated fixing of programs with contracts. In ISSTA’2010.
ACM, 61–72.

[45] WestleyWeimer, Zachary P Fry, and Stephanie Forrest. 2013. Leveraging program
equivalence for adaptive program repair: Models and first results. In ASE’2013.
IEEE, 356–366.

[46] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In ICSE’2009. IEEE
Computer Society, 364–374.

[47] Mark Weiser. 1981. Program slicing. In ICSE’1981. IEEE Press, 439–449.
[48] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2017. An

Empirical Analysis of the Influence of Fault Space on Search-Based Automated
Program Repair. arXiv preprint arXiv:1707.05172 (2017).

[49] Ming Wen, Rongxin Wu, and Shing-Chi Cheung. 2016. Locus: locating bugs from
software changes. In ASE’2016. ACM, 262–273.

[50] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2009. A
survey on software fault localization. (2009).

[51] Rongxin Wu, Ming Wen, Shing-Chi Cheung, and Hongyu Zhang. 2017. Change-
Locator: locate crash-inducing changes based on crash reports. Empirical Software
Engineering (2017), 1–35.

[52] Qi Xin and Steven P Reiss. 2017. Identifying test-suite-overfitted patches through
test case generation. In ISSTA,17. ACM, 226–236.

[53] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and
Lu Zhang. 2017. Precise condition synthesis for program repair. In ICSE’17. IEEE
Press, 416–426.

[54] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clément, Sebastian Lame-
las Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2016.
Nopol: Automatic repair of conditional statement bugs in java programs. (2016).

[55] D Le Xuan-Bach, Chu Duc-Hiep, Lo David, Goues Claire, Le, and Willem Visser.
2017. S3: Syntax- and Semantic-Guided Repair Synthesis via Programming by
Examples. In FSE’2017. ACM, to appear.

[56] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. 2017. Better test cases
for better automated program repair. In FSE’17. ACM, 831–841.

[57] Luciano Zemín, Simón Gutiérrez Brida, Ariel Godio, César Cornejo, Renzo Degio-
vanni, Germán Regis, Nazareno Aguirre, and Marcelo Frias. 2017. An analysis of
the suitability of test-based patch acceptance criteria. In Proceedings of the 10th
International Workshop on Search-Based Software Testing. IEEE Press, 14–20.

[58] Hao Zhong and Zhendong Su. 2015. An empirical study on real bug fixes. In
ICSE’15. IEEE Press, 913–923.

11

