
Automatic Detection and Update Suggestion
for Outdated API Names in Documentation

Seonah Lee ,Member, IEEE, Rongxin Wu ,Member, IEEE, Shing-Chi Cheung , Senior Member, IEEE,

and Sungwon Kang ,Member, IEEE

Abstract—Application programming interfaces (APIs) continually evolve to meet ever-changing user needs, and documentation

provides an authoritative reference for their usage. However, API documentation is commonly outdated because nearly all of the

associated updates are performed manually. Such outdated documentation, especially with regard to API names, causes major

software development issues. In this paper, we propose a method for automatically updating outdated API names in API

documentation. Our insight is that API updates in documentation can be derived from API implementation changes between code

revisions. To evaluate the proposed method, we applied it to four open source projects. Our evaluation results show that our method,

FreshDoc, detects outdated API names in API documentation with 48 percent higher accuracy than the existing state-of-the-art

methods do. Moreover, when we checked the updates suggested by FreshDoc against the developers’ manual updates in the revised

documentation, FreshDoc detected 82 percent of the outdated names. When we reported 40 outdated API names found by FreshDoc

via issue tracking systems, developers accepted 75 percent of the suggestions. These evaluation results indicate that FreshDoc can be

used as a practical method for the detection and updating of API names in the associated documentation.

Index Terms—Application programming interfaces, documentation, history, software maintenance

Ç

1 INTRODUCTION

DEVELOPERS use application programming interfaces
(APIs) extensively in software development. API docu-

mentation provides an authoritative reference regarding
how APIs should be used. Changes regarding API imple-
mentations in popular libraries are common. In practice,
API implementations change regularly to accommodate
user needs [1]. The reasons for such changes include meet-
ing new market demands, enhancing user experience, pro-
viding better performance, increasing compatibility and
fixing security issues. Developers are advised to build their
applications on top of the latest API versions. These API
changes are commonly accompanied by updates of manu-
ally written documentation, which are typically extensive
and tedious. As a result, the APIs in documentation referen-
ces are frequently outdated [2].

In this paper, we refer to this phenomenon as the out-
dated API problem. Due to this problem, developers can
make programming errors and can be confronted with
issues such as loss of time and confusion [3], [4]. The

outdated API problem would require developers to over-
haul their files and correct outdated API names manually
every time their system is rebuilt with an updated API
library, which is a tedious, time-consuming and error-
prone process. If developers can use a tool that automati-
cally detects and updates outdated API names in their
documentation, it can significantly reduce the developers’
time spent on manually updating their documentation as
well as being confused by outdated APIs. Because nowa-
days software is developed more incrementally and the
length of the delivery cycle for the next version of a soft-
ware system is shortened (cf. [5], [6]), the value of such a
tool is greater than ever.

In this paper, we address the outdated API problem with
the following contributions:

1. We propose an automatic approach for the detection
andupdating of outdatedAPI names indocumentation.

2. We implement our approach as a tool, namely Fresh-
Doc, and evaluate it with real-world software projects.
The evaluation results show that our approach signifi-
cantly outperforms the state-of-the-art approaches,
DocRef and AdDoc, in the detection of outdated API
names. Moreover, FreshDoc can provide developers
with suggestions for updating outdatedAPI names.

To automatically detect and update outdated API names,
three challenges must be overcome. First, in manually writ-
ten documentation, no consistent rules exist to distinguish
API names from user-defined terms (e.g., Spatial4J). Second,
code snippets provide insufficient source information for
recovering qualified API names. Third, if the same names
reappear in the latest version of the code and its revision
histories, it is difficult to determine whether the API names

� S. Lee is with the Department of Aerospace and Software Engineering and
with the Department of Informatics, Gyeongsang National University,
Jinju, Jinju-daero 501, Republic of Korea. E-mail: saleese@gnu.ac.kr.

� R. Wu and S. C. Cheung are with the Department of Computer Science
and Engineering, The Hong Kong University of Science and Technology,
Hong Kong, China. E-mail: {wurongxin, scc}@cse.ust.hk.

� S. Kang is with the School of Computing, KAIST373-1, Guseong-dong,
Yuseong-gu, Daejeon 34141, Republic of Korea.
E-mail: sungwon.kang@kaist.ac.kr.

Manuscript received 23 Jan. 2018; revised 13 Dec. 2018; accepted 7 Feb. 2019.
Date of publication 25 Feb. 2019; date of current version 16 Apr. 2021.
(Corresponding author: Sungwon Kang.)
Recommended for acceptance by E. Murphy-Hill.
Digital Object Identifier no. 10.1109/TSE.2019.2901459

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 4, APRIL 2021 653

0098-5589 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2004-2924
https://orcid.org/0000-0002-2004-2924
https://orcid.org/0000-0002-2004-2924
https://orcid.org/0000-0002-2004-2924
https://orcid.org/0000-0002-2004-2924
https://orcid.org/0000-0002-4648-3795
https://orcid.org/0000-0002-4648-3795
https://orcid.org/0000-0002-4648-3795
https://orcid.org/0000-0002-4648-3795
https://orcid.org/0000-0002-4648-3795
https://orcid.org/0000-0002-3508-7172
https://orcid.org/0000-0002-3508-7172
https://orcid.org/0000-0002-3508-7172
https://orcid.org/0000-0002-3508-7172
https://orcid.org/0000-0002-3508-7172
https://orcid.org/0000-0001-7947-8741
https://orcid.org/0000-0001-7947-8741
https://orcid.org/0000-0001-7947-8741
https://orcid.org/0000-0001-7947-8741
https://orcid.org/0000-0001-7947-8741
mailto:
mailto:
mailto:

are outdated. The underlying idea of FreshDoc is that an
outdated API name can be detected and updated by know-
ing how the API implementation has been changed across
its revisions in the code repository. To overcome these chal-
lenges, we developed FreshDoc based on a three-step
approach. First, to translate API implementation changes
into documentation updates, FreshDoc extracts change
rules from the API implementation revisions and then
applies the rules. The extracted change rules help distin-
guish outdated API names from user-defined terms and
API names in third-party libraries. Second, to detect out-
dated API names in API documentation, FreshDoc checks
whether the API names are in the revision history but not in
the latest version of the library. This step prevents the API
names in the latest version from being mistakenly regarded
as outdated API names. Third, once FreshDoc has detected
outdated API names in the documentation, the program uti-
lizes the change rules for marking and updating outdated
API names in the documentation. FreshDoc also uses heu-
ristic rules for recommending new API names. Currently,
FreshDoc can be applied to the manually written API docu-
mentation of Java projects that maintain their source code
revision history in a Git repository.

We evaluated FreshDoc on the manually written docu-
mentation of four Java open source projects [7], [8], [9], [10].
The evaluation results show that FreshDoc performs well in
the detection of outdated API names, with an F-measure of
60 percent. FreshDoc significantly outperforms the existing
state-of-the-art methods DocRef [2] (6 percent F-measure)
and AdDoc [12] (12 percent F-measure). Moreover, Fresh-
Doc can update outdated API names with a high degree of
accuracy, according to the results of two evaluations. In the
first evaluation, we compared the FreshDoc updates with
the developers’ updates in the revised documentation for
the four projects. We found that FreshDoc covered 60 of 73
manual updates. In the second evaluation, we posted the 40
suggestions made by FreshDoc to issue tracking systems. Of
the 40 new API outdated problems that were reported, 30
were confirmed and fixed by developers within a few weeks
after posting.

The remainder of this paper is organized as follows.
Section 2 shows motivating examples. Section 3 addres-
ses challenges. Section 4 describes our method. Section 5
explains our experimental setup, and Section 6 presents
the evaluation. Section 7 discusses the usefulness of our
method. Section 8 surveys related work, and Section 9 dis-
cusses threats to validity. Section 10 concludes the paper.

2 MOTIVATION

This research was inspired by a communication between the
first author of this paper and a test engineer in TTA.1 The
test engineer’s job was to develop test cases according to a
bunch of documentation provided by a company and con-
duct tests using them. However, when she reported test
results, the company people often said that the documenta-
tion was out of date. The problem of outdated untrustwor-
thy documentation has also been pointed out in literature:

“Unfortunately, the documentation for most software systems is
usually out-of-date and therefore cannot be trusted” [13], [14].

Outdated documentation can result in poor software
maintenance [15], [16], [17], [18], [19], [20], [22]. First,
outdated documentation causes software aging [17]. As
changes are made to a software system, its documentation
becomes increasingly outdated [18]. Due to the inconsisten-
cies between code and documents, both the original devel-
opers and the developers who make changes may not
understand the software system and the system becomes
deteriorated [17]. Second, outdated documentation hinders
the effectiveness of documentation [19], [20]. One survey
revealed that being up to date is the second important attri-
bute for effective documentation [19]. Another revealed that
outdated documentation can block developers from utiliz-
ing APIs [20]. Third, outdated documentation causes con-
fusion [3], [21]: “Developers are usually confused if a method’s
behavior is different from what is expected on previous Android
releases, ½. . .� deleting public methods from APIs is a major trigger
for questions that are more discussed and of major interest for the
community” [3]. Last, outdated documentation inhibits new-
comers from onboarding a software project [22]: “The infor-
mation was outdated ½. . .�. So, at least as a newcomer, it was quite
challenging to get past those errors” [22]. As a result, previous
empirical studies have called for the identification and
marking of outdated information in API documentation2

[19], [20], [22].
Worse yet, the presence of outdated API names in docu-

mentation often results in bugs, causing runtime errors and
compilation errors. For example, an application developer
who attempted to configure the Logback project by refer-
ring to the documentation reported a critical bug regarding
the nonexistence of CyclicBufferTrackerImpl. This
issue report included the java.lang.ClassNotFound-Exception,
which was a runtime error [24]. Another application devel-
oper, who was confused by a code example in the Hiber-
nate-orm documentation, reported a major bug regarding
the nonexistence of Session. getSession. He found that
the Session class does not include the getSession

method. This example was a compilation error [25]. Both
examples misled and frustrated the respective developers.
Similar bugs are reported in [26], [27], [28] and in StackO-
verflow [29], [30].

Outdated documentation is a common problem [14], [31],
[32], [33]. Tilly et al. stated, “Regrettably, documentation for
most older programs is out-of-date” [14]. Two surveys revealed
that 67�68 percent of participants stated that the documen-
tation related to their systems is outdated and stated,

1. TTA is Telecommunication Technology Association that tests and
certifies IT products. https://www.tta.or.kr/eng/index.jsp

2. To automatically generate API documentation from code com-
ments, the JavaDoc tool can be used. In such a case, when the code is
refactored, Eclipse Integrated Development Environments (IDEs) can
prefix names with specific annotations (e.g., @link) in comments [11],
[19]. However, previous studies have pointed out the useless content of
these automatically generated documentations. Maalej and Robillard
found that 50% of the content of automatically generated documenta-
tion provides no useful information [11]. Forward reported one partic-
ipant’s description: “[automated documentation tools] don’t collect the
right information” [19]. We have also observed that open-source proj-
ects must often manually maintain the written documentation that
describes the API usages [7], [8], [9], [10]. Thus, in this paper, we focus
on manually written documentation and on how to update the out-
dated API names within it.

654 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 4, APRIL 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

https://www.tta.or.kr/eng/index.jsp

“documentation typically suffers from the outdated problems”
[31], [32]. A recent survey reported that 93 percent of partici-
pants observed that incomplete or outdated documentation
is a pervasive problem [33]. In addition, outdated API issues
are pervasive. To identify documentation issues, we
searched GitHub for the keyword “outdated API”. By also
using other keywords such as “obsolete class”, we identi-
fied 752,636 issues, as shown in Table 1. To understand the
details, we surveyed the statistics of all issues, documenta-
tion issues and outdated API issues in the issue tracking
systems of four projects, as indicated in Table 2. Specifically,
to identify documentation issues, we used the keyword
“doc”, the labels “docs” and “documentation” or the docu-
mentation component names of the projects. Table 2
presents the number of issues, the percentage of issues with
a priority of “Major” or higher, and the average fixing time
of the closed issues for three groups of issues. The numbers
of outdated issues range from 45 to 846 in these projects, as
shown in the third column from the right in Table 2. We
found these issues by using the three representative key-
words in Table 1. The percentages of issues classified as
major issues were 69 percent for the Logback project and
98 percent for the Hibernate-orm project. We could not cal-
culate the percentages of the major issues for the other two
projects because their issue tracking systems do not have
priority categories in the issue report. The average fixing
time was between 21 and 522 days.

Themanual detection and update of outdatedAPIs in doc-
umentation require a significant amount of effort [2], [23]. For
example, the DOCUMENT section of Fig. 1 contains outdated
APIs. To discover these APIs, developers should examineAPI
names in approximately 30,000 lines of API documentation
per project (cf. Table 6). Developers who have been working
on the project could find outdatedAPIswith their expertise of
the project. However, developers who are unfamiliar with the
project may find difficulty to recognize outdated APIs and
thus misuse these APIs [34]. The process of updating manu-
ally written documentation can be especially exhausting after
significant code refactoring. For example, an issue report sug-
gesting a refactoring, “Refactoring accessors using only getters
and setters” [35], involved 15,078 code revisions in 839 classes.
One month later, a contributor left the comment, “It breaks a
lot of examples in the docs, on the mailing list and all over the Inter-
net.” Eight months after the comment wasmade, another con-
tributor commented on missing documentation updates. The
contributor noted the mixes of hits() and getHits(), as
shown in the BUGREPORT section of Fig. 1, leading to subse-
quent updates [36] of search.asciidoc, as shown in the DOCU-
MENT section. The documentation updates occurred eight
months after the relevant API implementation changes were
made [37], which are shown in the CODE section.

To ameliorate such a situation, this paper proposes an
effective mechanism for automatically detecting outdated
APIs and updating them in the associated documentation.

3 CHALLENGES

Our method leverages API implementation changes to
detect outdated APIs in manually written documentation.3

The method addresses three technical challenges, which are
discussed in detail in the following sections.

3.1 No Well-Defined Documentation Rules

There are no well-defined rules by which APIs should be
described in manually written documentation. Finding
outdated APIs in such documentation is significantly more
difficult than finding outdated APIs in autogenerated docu-
mentation due to the occurrences of many user-defined
terms and other third-party APIs. Fig. 2 shows a fragment
of documentation for the Elasticsearch project [38]. The
project contains multiple user-defined terms that are not
APIs. For example, GeoShape and MultiSearch are titles, and
Spatial4J is a library name. Therefore, even after removing
the terms that match the latest target library’s APIs from the
documentation [2], the remaining terms are mostly not
outdated APIs. In addition, developers may include code
snippets that invoke other third-party APIs. For example,
the Elasticsearch documentation [7] refers to the writeVa-

lueAsBytes method, which is an API of another library,
Jackson. It is challenging to distinguish outdated APIs from
user-defined terms and third-party APIs.

3.2 Incomplete Source Information

Insufficient structural information of code snippets in API
documentation introduces ambiguity when linking an API
to its library. When a code snippet is brief, the qualified
name of an API may not be recovered. For example, the
prepareSearch() method in Fig. 2 has no declared class.
Because different classes can have methods and fields with
the same names [42], [43], it is difficult to associate the name
of a method or a field in the documentation with a specific
code in the API library implementation. A search of pre-
pareSearch() in the latest version could coincidentally
find a method with the same name in other irrelevant clas-
ses, leading to the misunderstanding that prepareSearch() is
still valid and not outdated. Furthermore, API documenta-
tion may contain long-obsolete APIs. For example, Fig. 3
shows a code snippet that contains the ExecutionCon-

text class, which was renamed 10 years ago. Outdated
APIs can be identified based on the API changes between
the releases of source code [12]. However, the outdated
APIs that were changed before these releases, but still exist
in the documentation, would be missed.

3.3 A Series of Code Changes

A series of changes can occur to an API through multiple
revisions. Because APIs can be deleted and created with the
same name at different times and can be renamed multiple

TABLE 1
Statistics for Outdated API Issues in GitHub

Keyword #Issues

outdated API (c/m/f) 119,081
obsolete API (c/m/f) 125,584
out of date API (c/m/f) 507,971
Total 752,636

c denotes “class,” m denotes “method,” and f denotes “field.”

3. We do not consider grammatical/spelling mistakes such as
“modes.The” or “follwoing” in documentation because they do not
lead to the filing of bug reports, unlike the outdated APIs.

LEE ET AL.: AUTOMATIC DETECTION AND UPDATE SUGGESTION FOR OUTDATED API NAMES IN DOCUMENTATION 655

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

times, it is not straightforward to determine the correct API
for replacing an outdated API. For example, the hits()
method in Fig. 1 was renamed to getHits(). If the method
is renamed to getSearchHits(), the method hits()
should be updated to getSearchHits() instead of
getHits(). Moreover, the polymorphism in a class hierar-
chy can affect the updating of API names in the documenta-
tion. When an API has been deleted, we cannot be sure
whether the API has been deleted or has been replaced by
its parent. For example, if hits() is deleted, one should
investigate whether the parent class has an API with the

same name. Such complexity arises when determining the
correct APIs for API updates.

4 THE FRESHDOC METHODOLOGY

We propose a method called FreshDoc. The method auto-
matically updates outdated API names in API documenta-
tion. The key idea of FreshDoc is to classify API names as
outdated if they appear in the software revision history but
not in the latest version of the library. In this section, we first
introduce the definition and formulation of the key idea of
FreshDoc and then explain the design and the steps of the
method.

4.1 Definition and Formulation

An API evolves with the changes in its implementation. To
address the API evolution, we first define relevant terms as
follows.

Application Programming Interface (API): an interface rep-
resenting a “contract” between a library and applications
with regard to the functions that a library should provide to
them.

API implementation: the code that implements an API.
API element: a public class (including an interface), a pub-

lic method (including its parameters) or a public field in a
library.

API signature: the declaration part of an API element
(including the parameters of a public method).

API name: a group of terms used to identify an API ele-
ment (called name in this paper).

We then formulate the evolution of an API library imple-
mentation as follows. Let a revision history be RH, the set of
changes in the entire library’s revision history be CRH and
the set of changes to evolve the library from version k� 1 to
version k be CRHðkÞ. A change in CRHðkÞ can be represented
as a pair ðek�1; ekÞ of two implementation states of an API
element e, where ek�1 and ek are the states just before and
just after the change, respectively.

The evolution of API implementation can be used to
detect the existence of an outdated API name in documenta-
tion. Hence, we define the following relevant terms.

Fig. 1. Example of a bug report, outdated documentation and a code
change.

Fig. 2. Example of outdated documentation from the Elasticsearch
project. Fig. 3. Example of outdated documentation from the Logback project.

TABLE 2
Statistics for Outdated API Issues

Project

All Issues Documentation Issues Outdated API Issues

#Issues Issues �
Major

Fixing
Time

#Issues Issues �
Major

Fixing
Time

#Issues Issues �
Major

Fixing
Time

Elasticsearch [38] 7731 N/A 36 days 470 N/A 115 days 159 N/A 35 days
Springboot [39] 2923 N/A 41 days 287 N/A 60 days 71 N/A 21 days
Hibernate-orm [40] 9853 7882 (80%) 336 days 606 448 (74%) 518 days 846 835 (98%) 386 days
Logback [41] 1516 1167 (77%) 268 days 355 209 (59%) 272 days 45 31 (69%) 522 days

656 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 4, APRIL 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

Documentation: a set of documents (i.e., computer files)
that describe the API usages of a library.

Word: a single distinct meaningful element used to form a
sentence or a statement in a document.

Qualified name: an unambiguous name with a namespace.
In Java, for example, a “qualified name” consists of a sequence
of identifiers separated by “.” tokens. In the case of a method,
the “qualified name” includes the parameters of themethod.

Simple name: a nonqualified name without a namespace.
A “simple name” consists of a single identifier. In the case
of a method, a “simple name” does not include parameters.

In API documentation, an API becomes outdated when its
documented usage is inconsistent with its current implemen-
tation. We formulate a criterion for identifying the outdated
API names in documentation as follows. Let the set of API
names that are in the revision history be ERH and the set of
API names in the latest version beE. Let the name4 of an API
element e in the documentation be n:e. If n:e is found in the
library’s revision history but not in the latest version, then n:e
is outdated. This criterion can be expressed as follows:

n:e is outdated if n:e 2 ERH ^ n:e =2 Ev (C1)

An API name should be updated to avoid inconsistency
with the change in its implementation. Let the set of name
changes from version k� 1 to version k be ERHðkÞ. To update
an outdated API name, we locate the change ðn:ek�1; n:ekÞ
fromERH . If the change is found, we apply the change (n:ek�1,
n:ek) to n:ek�1, which updates n:ek�1 to n:ek. The name n:ek
can be updated until it matches the API name in the latest
library version,E. This criterion can be expressed as follows:

n:ek�1) n:ek
if ERH n:ek�1ð Þ ¼ n:ek ^ n:ek 2 Ev

Otherwise; reapply C2 to n:ek

�
: (C2)

So far, we have discussed two criteria for detecting the
existence of outdated API names (C1) and for updating
the detected inconsistency (C2). However, in the criteria, the
name n:e is simplified. The name should be refined to the sim-
ple name s:e and the qualified name q:e. In the criterion (C1),
the first name n:e should be the simple name s:e in the docu-
mentation. The second and third occurrences of n:e should be
the qualified name q:e in the revision history. The simple
name s:e should be recovered to the qualified name q:e. In
(C2), the name n:e represents the qualified name q:e.

To accurately detect outdated API names, we consider
three issues associated with the recovery of s:e to q:e. First, to
utilize structural information of code snippets for the

recovery, we must accurately extract the code snippets from
the documentation. Second, to avoid mistaking natural lan-
guage words or user-defined terms for API names, we must
distinguish among them. Third, to accurately apply (C1) and
(C2), we must associate s:ewith its correct q:e. Section 4.2 dis-
cusses the design strategies implemented in FreshDoc, includ-
ing the details of the aforementioned issues.

4.2 Design Strategies for FreshDoc

An overview of FreshDoc is presented in Fig. 4. The first
step automatically extracts the change rules from software
revision histories (cf. Section 4.3). The second step extracts
the code snippets from the documentation and analyzes the
snippets to recover the qualified names (cf. Section 4.4). The
third step detects any outdated API names in the documen-
tation and then updates the outdated API names using the
change rules (cf. Section 4.5).

FreshDoc addresses the challenges described in Section 3
as follows. To overcome the problem ofmissingwell-defined
documentation rules (cf. Section 3.1), FreshDoc checks
whether each word in the documentation matches any API
names in ERH as potential API names (cf. Section 4.5.1).
In more detail, to distinguish API names from natural lan-
guage words or user-defined terms, FreshDoc utilizes nam-
ing convention, programming symbols and change rules (cf.
Section 4.5.1.1). To detect outdated API names in documen-
tation, FreshDoc checks each word with the context of the
word and the extracted change rules. By utilizing the context
and the rules, FreshDoc associates a simple name s:ewith its
qualified name q:e (cf. Section 4.5.1.2). As a result, it is possi-
ble to exclude the user-defined terms that are not API names
as well as to detect the APIs named after legitimate dictio-
narywords, in contrast with DocRef. [2].

To overcome the incomplete source information (cf.
Section 3.2), FreshDoc extracts code snippets from docu-
mentation and analyzes them with an island grammar
parser ANTLR [56] (cf. Section 4.4). To extract code snippets
from documentation, FreshDoc identifies the characteristics
of code snippets, text blocks, and the context of a line (cf.
Section 4.4.1). To recover the qualified names in code snip-
pets, FreshDoc analyzes each code snippet based on the
change rules and the structural information extracted from
ERH (cf. Section 4.4.2). It compensates for insufficient struc-
tural information and finally helps to detect the archaic and
outdated API names in code snippets. The set of recovered
qualified names of code snippets are used to select the most
appropriate qualified name (Section 4.5.1).

To update API names induced by a series of code changes
(cf. Section 3.3), FreshDoc extracts not only change rules [48],
[49], [50] but also class hierarchies and structural information
(cf. Sections 4.3.1 and 4.3.2). In addition, extracting a series of

Fig. 4. The steps of FreshDoc.

4. Because renaming is the most common refactoring practice [44],
we primarily focus on the application of changes to code names.

LEE ET AL.: AUTOMATIC DETECTION AND UPDATE SUGGESTION FOR OUTDATED API NAMES IN DOCUMENTATION 657

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

code changes from the entire revision history eliminates the
restriction that a usermust specify the versions of a library, in
contrast to AdDoc [12].When updatingAPI names, FreshDoc
recursively applies the change rules to outdated API names.
(Section 4.5.2).

As quality requirements for FreshDoc, we consider accu-
racy, performance, and simplicity. We make the following
decisions:

(1) To yield a reasonable accuracy, we devise techniques
of extracting code snippets (Section 4.4.1), detecting
outdated API names with change rules (Section
4.5.1) and updating API names (Section 4.5.2).

(2) To yield a reasonable performance, we decide not to
extract the entire source code from each revision or
use natural language parsers [45], [46]. Instead, we
devise a lightweight call analysis technique to ana-
lyze only a change set (cf. Section 4.3.1.3). The deci-
sion enables us to avoid the crashes that occurred
when analyzing the entire program of each revision.
We also adopt Eclipse Spell Checker to check for
spelling errors [47] (Section 4.4.1). The tool lightly
analyzes a document but provides sufficient infor-
mation for the metric DocRef proposed [2].

(3) To simplify the process of updating API names,
when q:e appears in several changes in the history
RH, we retain the latest change of q:e (cf. Section
4.3.3). In addition, to select the qualified name from
among the possible list of qualified names, Dagenais
and Robillard’s work [12] performs three different
levels of contextual searches. To perform different
contextual searches in one shot, we devise a single
contextual distance function (cf. Section 4.5.1). The
function simplifies the selection of the qualified
name for w in the context of the documentation.

4.3 Step 1: Extracting Change Rules

To extract the change rules from code revisions, our method
combines two previous methods, i.e., Change-Distiller [51],
[52] and Call Analysis [48], [49], [50]. Change-Distiller ana-
lyzes two versions of a file and extracts the changes to the
API definitions [51], [52]. Call Analysis analyzes two ver-
sions of a software system and extracts the changes to the
API calls [48], [49], [50]. These two methods are complemen-
tary to each other in terms of their capability of describing
changes. Our method also extends these methods to encom-
pass the changes to an API name.

4.3.1 Mining Revisions

FreshDoc extracts the change rules from all revisions. A
change rule, denoted cr, represents how an API name is
changed to a new name. The rule can be expressed as a
3-tuple, i.e., cr ¼ ðT;L ! RÞ, where T represents the com-
mitted revision, L the outdated qualified name, and R the
new qualified name. For example, the hits() method in
Fig. 1 can be expressed as follows:

ðcc83c2;
org:elasticsearch:action:search:SearchResponse:hitsðÞ !
org:elasticsearch:action:search:SearchResponse:getHitsðÞÞ:

A change rule cr can have three different cases:

� ðT;f ! RÞ: An API name is created.
� ðT;L ! fÞ: An API name is removed.
� ðT;L ! RÞ: An API name is changed to another.
These three cases can be associated with the correspond-

ing actions. For example, when an API element is added, cr
has the change case ðT;f ! RÞ. If the API element is
renamed, moved or replaced, cr has the change case
ðT;L ! RÞ. If the API element is deleted, cr has the change
case ðT; L ! fÞ.

However, when an API element is deprecated, its com-
ment can specify the new API element to replace it with a
specific annotation (e.g., @link). In this situation, the dep-
recation action will have the case ðT;L ! RÞ. Subsequently,
if the API element is deleted and the previous deprecation
action has the case ðT; L ! RÞ, it will be better to preserve
R. In this situation, the deletion action will retain the case
ðT;L ! RÞ.

In addition, alterations to modifiers and annotations
affect the use of API names. An API name can be used
when it is public and undeprecated: ðT;f ! RÞ. An API
name is dropped when it becomes private or deprecated:
ðT;L ! fÞ.

FreshDoc extracts change rules according to the three
cases, the nine actions and the three code types (i.e., class,
method and field) as specified in Table 3. To extract change
rules, FreshDoc uses Git, ChangeDistiller, and Call Analysis
in order, with regard to a change set CRHðkÞ. Table 3 presents
these cases of change rules, their associated actions, and the
extraction methods. We explain the details in the following
subsections.

Using Git Features. Using Git [53], FreshDoc detects the
addition, deletion, renaming and moving of files in a change
set CRHðkÞ. FreshDoc extracts change rules for the classes,
methods and fields within the files. To do so, FreshDoc per-
forms the two following steps:

(1) Extract added or deleted classes, methods and fields
from an added or deleted file, and create the change
rules.

(2) Extract renamed or moved classes, methods and
fields from a renamed or moved file using the Git
renaming detection function, and create the change
rules. Note that renaming and moving files are simi-
lar functions. When a file is moved, the qualified
name of an API element within the file changes.

4.3.1.2 Adapting ChangeDistiller. FreshDoc uses Change-
Distiller [52] to identify the change patterns of the modified
contents of a changed file. Table 3 shows that FreshDoc uses
the 18 change patterns of ChangeDistiller to create change
rules. For example, the fourth row from the top in the table
shows that FreshDoc uses the additional functionality pat-
tern for an added method. The fourth row from the bottom
shows that FreshDoc adapts the decreasing accessibility pat-
tern for a deprecated class, method or field.

FreshDoc adapts ChangeDistiller. The adaptation is sum-
marized in the last column of Table 3. First, we modified the
decreasing accessibility patterns to detect insertions of dep-
recated annotations. In this case, we found a new qualified
name R using doc insert and update patterns (�4�5). Second,

658 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 4, APRIL 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

we modified the increasing accessibility patterns to detect
deletions of deprecated annotations (�1). Third, we modified
the parameter insert, order, type change and delete patterns
to identify both the outdated qualified name L and the new
qualified name R in the parameter changes (�2). Fourth, we
combined the removed functionality and statement insert/
update patterns to detect replacements (�3). The adapted
ChangeDistiller can be found in [54]. The adaptation
enriches ChangeDistiller to identify code changes, such as
detecting the annotation changes concerning API elements.

4.3.1.3 Extracting Structural Information. Performing Light-
weight Call Analysis. FreshDoc adopts Call Analysis [48], [49],
[50], which captures the replacements of old methods by
new methods. Existing methods [48], [49], [50] analyze
the entirety of each revision to obtain the qualified names.
However, the analysis raises critical performance issues
such as crashes when analyzing a significant number of revi-
sions in large software systems, which are the main target of
our method. Thus, we developed a lightweight call analysis
method that analyzes the change set CRHðkÞ only and
extracts the change rules relevant to the method replace-
ments. The analysismethod performs the following steps:

(1) Extract the added and deleted statements from
CRHðkÞ.

(2) Check whether each statement contains the simple
name of an added member s or a deleted member t
in CRHðkÞ.

(3) Track down themethods that contain such statements,
and identify thesemethods as the callers of s or t.

(4) If s has the same set of callers as t, create a replace-
ment rule for swith t; ðT; s ! tÞ.

For example, if there is a deleted method, such as org.
elasticsearch.index.mapper.ParseContext.map-

pers-Added(), the analysis checks whether the simple name
mappersAdded() belongs to each deleted statement (e.g.,con-
text.mapperAdded();). If so, the analysis adds the method
containing the statement (e.g., org.elasticsearch.
index. DocumentMapper.parse()) as the caller of the
deleted method. If the analysis finds an added method (e.g.,
org.elasticsearch.index.mapper.ParseContext.

mappers-Modified()) and its simple namemappersModified
() belongs to the same callers, then it chooses the method as a
replacement.

Using a simple name enhances the performance of Call
Analysis. However, because simple names are used, our
analysis could yield inaccurate call relationships. Therefore,
to maintain high accuracy, the analysis uses a threshold ua,
the minimum number of calls. If the number of calls that
change s to t is less than ua (i.e., 3), our analysis ignores the
replacement. There could also be several candidates of t
that replace s. If so, the analysis chooses the one that has the
most similar name to s. To avoid extracting inaccurate
change rules, the analysis maintains another threshold ub. If
the similarity value5 is less than ub (i.e., 0.5), our analysis
ignores the replacement. Finally, the analysis creates change
rules for additional method replacements.

4.3.1.4 Extracting Structural Information. Because the code
snippet analysis to be discussed in Section 4.4.2 requires
additional structural information, FreshDoc implements a
method that extracts the related type of each API element.
As shown in Table 4, the related types vary with the code
type: the return type for a method and the declared type for
a field. For a class, the related type specifies whether it is a
class or an interface.

TABLE 3
Extracting Change Rules

G denotes Git (Section 4.3.1.1), CD denotes ChangeDistiller (Section 4.3.1.2), and CA denotes Call Analysis (Section 4.3.1.4). Code type c denotes a class, m
denotes a method, and f denotes a field. The numbers representing adaptions are explained in Section 4.3.1.2.

TABLE 4
Structural Information That FreshDoc Identifies

Code Type API Name Related Type

Method qualified name Return type
Field qualified name Declaration type
Class qualified name Class j Interface 5. We used the library in https://github.com/rrice/java-string-

similarity

LEE ET AL.: AUTOMATIC DETECTION AND UPDATE SUGGESTION FOR OUTDATED API NAMES IN DOCUMENTATION 659

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

https://github.com/rrice/java-string-similarity
https://github.com/rrice/java-string-similarity

Each change rule has its own code type and related type.
For example, the change rule of the API name org. elas-

ticsearch.action.search.SearchResponse.hits()

has its code type Method and its related type SearchHits.

4.3.2 Analyzing the Latest Version and Its Class

Hierarchy

The change rules mined in Section 4.3.1 do not provide suf-
ficient information for the detection of outdated API names
because the API names in documentation may be the API
names of the latest version of the library. For example, five
API elements of the latest version of the Elasticsearch proj-
ect have the simple name hits() in Fig. 1. To prevent the
change rules from being mistakenly applied to the up-to-
date API names in the documentation, FreshDoc extracts
the API information from the latest version. This extraction
is accomplished by performing a three-step analysis:

(1) Extract all of the API names from each class c of the
latest version of the library. Each qualified name n:e
is captured by a change rule in the form ðf; L ! fÞ.

(2) Analyze the structural information of n:e (cf. Section
4.3.1.4).

(3) Find c’s parent class pc. The inheritance relationship
is captured as a pair ðc; pcÞ and then stored in a
database.

4.3.3 Storing and Indexing Change Rules

FreshDoc stores all of the extracted change rules, denoted
CR, in a database. Each rule cr is also labeled with a tag rep-
resenting a change action (e.g., Renamed). A change rule
extracted from the latest version is labeled with a tag
“Latest”. FreshDoc also stores the structural information (cf.
Section 4.3.1.4) and the class hierarchical information (cf.
Section 4.3.2). FreshDoc maintains a primary key PK by
applying the following rules:

L) PK j if cr hasL
R) PK jif cr has noL
Overwrite PK j if cr has PK that exists in the database:

To improve search performance, FreshDoc creates an
index onCR. An index holds a simple namewith a list of qual-
ified names. FreshDoc identifies the simple name of a primary
key PK as an index and adds PK to the list of qualified names.
FreshDoc indexes all change rules, except the change rules
labeled Private, because they are not API elements.

As an intermediate evaluation, we analyzed 226,166
change rules extracted from the Elasticsearch project [30].
The change rules with the “Deleted” tags accounted for
42 percent of all the change rules. The change rules with
“Latest” accounted for 29 percent, the change rules
with “Renamed” 17 percent, the change rules with “Added”
10 percent, the change rules with “Replace” 1 percent, and
the others less than 1 percent. This result indicates two
points of improvement. First, the change rules with the
“Deleted” tags account for a higher percentage than we
expected. The functionality of many deleted API elements
are alternatively provided by other API elements. Second,
the change rules with the “Added” tags account for

approximately 10 percent of all the change rules. Theoreti-
cally, these rules should not exist at the end of Step 1
because these rules should have been overwritten by the
change rules with the “Latest” tags if they existed in the lat-
est version.

4.4 Step 2: Detecting APIs from Code Snippets

Step 2 consists of the substep of extracting code snippets from
documentation (Section 4.4.1) and the substep of recovering
the qualified names in code snippets (Section 4.4.2).

4.4.1 Extracting Code Snippets

This section suggests a metric for determining whether a
line belongs to a code snippet by checking the characteris-
tics of the line itself and its context. To extract code snippets,
DocRef [2] identifies paragraphs by the <p> html tags and
checks whether each paragraph is a code snippet by calcu-
lating the ratio of natural language errors and counts punc-
tuation marks. However, there are no general marks to
identify paragraphs (e.g., <p>) in manually written docu-
mentation. Thus, we let FreshDoc identify lines by a line
delimiter and check a document d line by line.

FreshDoc analyzes the characteristics of code snippets,
the characteristics of text blocks and the context of each line.
The characteristics of code snippets cs and the characteris-
tics of text blocks tb are defined as follows.

(1) cs is the set of the characteristics of code snippets in a
line. The characteristics comprise natural language
errors [2], code-related marks (e.g., “;”, “(“, “)”, “ ¼
”, 00f00; 00g00; 00 þ 00 and space dots “.”), reserved words
(e.g., abstract, and boolean) and comments (e.g.,
//). To count natural language errors, FreshDoc
uses the number of spelling errors found by Eclipse
Spell Checker [47].

(2) tb is the set of characteristics of text blocks in a line.
The characteristics comprise the spaces between
words, text-related marks (e.g., 00 < < ”, 00 > > 00,
and 00 ¼¼ 00) and html file expressions (e.g., “.html”).
The use of the spaces between words was motivated
by our observation that sentences in text descriptions
usually connect one word to another by using a
space. The text-related marks were markup tags
used mainly for titles in AsciiDoc.6

By combining all of the characteristics of a line, FreshDoc
calculates the following metric:

v1 ¼ 2� csj j � tbj j
wordsj j þ 1

(E1)

where jwords j is the number of words in a line. In the met-
ric, the number of j cs j is doubled based on our empirical
experiment. If the v1 value is greater than a threshold ux,
FreshDoc regards the line as belonging to a code snippet.
For example, in the statement in Fig. 1, “SearchResponse
scrollResp ¼ client.prepareSearch(). execute

().actionGet();”, j cs j is 12, j tb j is 3, and jwords j is 6.
In this case, the value v1 becomes 3.5. Because the value v1
is greater than the predefined value of ux (i.e., 0.9), the line
is classified as Code.

6. AsciiDoc, http://www.methods.co.nz/asciidoc/

660 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 4, APRIL 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

http://www.methods.co.nz/asciidoc/

Regarding the context of each line, FreshDoc checks
whether a line is in a block (e.g., f. . .g) and increases j cs j if
it is in a block. If a line contains less than two words, Fresh-
Doc regards the line as a continuation of the previous line.
If there is a project-specific mark (e.g., —-) to distinguish
code snippets from text descriptions, FreshDoc classifies the
line as Tag and the following line as a different tag from its
previous line (e.g., Text to Code).

It is important to extract a code snippet holistically to
analyze its structure. Because our technique uses the charac-
teristics of a line, it could classify code comments as Text
and split a code snippet into more than one snippet. To pre-
vent this process, FreshDoc classifies a line that has a com-
ment symbol ‘//’ as Code.

This extraction technique correctly classified 97 percent
(4,243/4,385) of the lines in the documentation of Elastic-
search [7]. Only 142 lines (3 percent) of the text descriptions
were misclassified as code snippets. FreshDoc is robust
to misclassification of lines because of its two-step analysis.
Even if FreshDoc fails to identify API names in the
lines misclassified as code snippets in Step 2 (Section 4.4.2),
it re-identifies API names in these lines as text in Step 3
(Section 4.5.1).

4.4.2 Analyzing Code Snippets

FreshDoc analyzes and recovers the qualified names of the
API elements used in each code snippet. Note that code
snippets are usually partial programs and may not be com-
pilable [2], [55]. To address this situation, we leverage an
island grammar parser ANTLR [56] to conduct lexical and
syntactic analyses of code snippets.

For ANTLR, we define the grammar of code snippets
based on the existing Java grammar,7 in which class/
interface declarations, method declarations or block
statements are considered to be code snippets. We then
identify the types of tokens in code snippets. We only
need to recover the qualified names of three types of
API tokens: class/interface, method and field. For exam-
ple, in Fig. 1, the method token hits and the field token
length are API tokens, whereas the variable token
scrollResp and the Java keyword token break are
not. After identifying the API tokens in the code snip-
pets, FreshDoc recovers their qualified names by using
the following three rules:

(R1) Given a class/interface token, FreshDoc selects the
old qualified names whose indexes exactly match
this token (cf. Section 4.3.4). FreshDoc then returns
the qualified names that have the code types Class
(cf. Section 4.3.1.4).

(R2) Given a method token m, FreshDoc derives its
qualified name in two steps: (a) FreshDoc extracts
the class c to which m belongs. If this method
invocation is from a variable or a field, FreshDoc
binds the class of the variable or the field to m. If
this method invocation is from another method
m0, it binds the return type of m0 to m. Otherwise,
we will first find out the classes that contain a

method named by m, and then bind these classes
to m. (b) FreshDoc selects the old qualified names
from the change rules such that the suffix of an
old qualified name matches c.m. If c has its parent
class c0, FreshDoc finds the qualified names whose
suffix matches c0:m.

(R3) Given a field token, FreshDoc extracts the class/
interface to which the field belongs. FreshDoc adopts
a strategy similar to R2 to bind the field’s type and
matches its qualified name.

Using the three rules, FreshDoc shortlists the possible
qualified names of API tokens in the code snippets. When
applying R2 and R3, FreshDoc typically analyzes each
expression from left to right. Given an expression client.

prepareSearch().execute().actionGet() in Fig. 1,
FreshDoc first identifies the class of the client instance,
then traces the prepareSearch() method of the class, and
next traces the execute() method of the return type of
prepareSearch().

However, in some expressions, the types of variables or
fields may be unknown. In the example, if the class of cli-
ent is unknown, FreshDoc first obtains a candidate set of
API names matching prepareSearch, leverages the
return type of each candidate API element and further
infers the remaining part of the expression. If the whole
expression of a given candidate API element can be cor-
rectly resolved, the qualified name of each API element in
the expression can be resolved. Otherwise, the given candi-
date API element is invalid, and FreshDoc continues to ver-
ify the next candidate.

Note that the origination of all outdated API names
which are found in an expression of a code snippet should
be found in the revision history. In Fig. 1, based on R2,
FreshDoc binds SearchResponse to the method hits().
By checking the change rules, FreshDoc then finds Sear-
chResponse. hits() and recovers the qualified name
org.elasticsearch.action.search.SearchRes-

ponse.hits().

4.5 Step 3: Updating API Names in Documentation

Step 3 consists of the substep of detecting outdated API
names (Section 4.5.1) and the substep of updating API
names (Section 4.5.2).

4.5.1 Detecting Outdated API names

To detect outdated API names in a document, FreshDoc
checks each word with the context of the word and the
change rules (Section 4.5.1.1). If the word in the docu-
ment is potentially an API name, FreshDoc recovers the
qualified name using the change rules (Section 4.5.1.2).
If the qualified name is outdated, FreshDoc regards
the API name that corresponds to the word as outdated
(Section 4.5.1.3).

4.5.1.1. Identifying a Potential API Name. FreshDoc reads
each word w from the document d. FreshDoc then checks
whether w is a potential API name. If so, FreshDoc finds the
possible qualified names for w, referring to the change rules
CR. The steps are as follows:

(1) Check whether w is a potential API name based on
naming conventions and programming symbols. If

7. Java Grammar, https://github.com/antlr/grammars-v4/tree/
master/java

LEE ET AL.: AUTOMATIC DETECTION AND UPDATE SUGGESTION FOR OUTDATED API NAMES IN DOCUMENTATION 661

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

https://github.com/antlr/grammars-v4/tree/master/java
https://github.com/antlr/grammars-v4/tree/master/java

there is an uppercase in w, ‘.’ immediately before w,
or ‘(’ immediately after w, then w is a potential API
name. FreshDoc also distinguishes between code
types (i.e., class, method and field). For example,
because the word “hitsðÞ” has ‘(’ immediately after
“hits”, FreshDoc regards the code type of hitsðÞ as a
method.

(2) Find the possible qualified names: (a) If w belongs to
any code snippet, FreshDoc obtains qualified names
that are recovered from the code snippet (cf. Section
4.4.2). This process helps narrow down the possible
names by using the structural information contained
in the code snippets. (b) If not, or if no names are
recovered, then FreshDoc searches for w in the
indexes of CR and returns the list of qualified names
whose indexes match w and code types match the
type of w. For example, for hitsðÞ, FreshDoc returns
the list of qualified names, including org. elas-

ticsearch.action.search.SearchRes-

ponse.hits().
These steps help address the lack of a set of well-defined

documentation rules (cf. Section 3.1). Step 1 differentiates
API names from natural language words. Step 2 excludes
user-defined terms by referring to change rules.

4.5.1.2. Selecting the Qualified Name. FreshDoc selects the
qualified name for w in the context of a document. To select
the qualified name from a set of candidates, FreshDoc first
splits a qualified name into identifiers, creates two vectors
for the qualified name and the target document, and calcu-
lates the cosine similarity:

Similarity ¼
~A � ~B

~A
��� ��� ~B

��� ��� ; (E2)

where vector A represents the qualified name and the sec-
ond vector B represents the document that contains the
identifiers of the qualified name. Each element of A repre-
sents each identifier of the qualified name. The length of B
is the number of identifiers.

Through the values of two vectors and their similarity
metric, FreshDoc implements the following rules:

(R1) The earlier an identifier is in its qualified name, the
more general the namespace it represents becomes.
The identifier’s impact should be reduced.

(R2) If an identifier contains an uppercase letter, it may
indicate a class, which should take precedence over
its package. The identifier’s impact should be
amplified.

(R3) The greater the number of identifier instances from
the qualified name in a document is, the more likely
the qualified name would be selected.

For R1, the number i is assigned to the ith element
of A. For R2, if an element represents an identifier with
an uppercase letter, its value is doubled. For R3, an ele-
ment of B is set to i� j where j is the number of occur-
rences of the corresponding element (i.e., identifier) in
the document.

For example, a qualified name org.elasticsearch.

action.search.SearchResponse.hits() is divided

into six identifiers: org, elasticsearch, action, search, SearchRes-
ponse and hitsðÞ. Then, vector A becomes [1, 2, 3, 4, 10, 6],
where 10 is obtained by doubling 5 by reflecting R2 because
the fifth identifier SearchResponse contains an uppercase letter.
Assuming that a document contains only the sentence “Please
note that the call to hits() is on the SearchResponse API,” the vector
B becomes [0, 0, 0, 0, 10, 6]. Then, the similarity is calculated

from ð102 þ 62Þ=ð
ffi
12 þ 22 þ 32 þ 42 þ 102 þ 62

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102 þ 62

p
Þ and

the similarity value is 0.91.FreshDoc then measures the dis-
tance betweenw and each identifier that is closest tow and cal-
culates the proximitymetric:

Proximity ¼ DS �D

DS
; (E3)

where DS is the length of the document and D is the aver-
aged distance of identifiers in a qualified name.

Through the value of D and the proximity metric, Fresh-
Doc implements the following rules:

(R4) The closer an identifier is to the location of w, the
more likely the qualified name would be selected.

(R5) If an identifier is not in the document, the distance is
set to the length of the document.

For R4, FreshDoc supports the proximity metric. For R5,
FreshDoc sets up the distance of an identifier not in the doc-
ument d as the length of d. When averaging the distances,
FreshDoc reimplements R4 and R5 by reusing vector A.
FreshDoc thus calculates a weighted average of these dis-
tances D as follows:

D ¼
Pn

i¼1 p� qij j � aiPn
i¼1 ai

; (E4)

where p is the location of w in the document, qi is the loca-
tion of each identifier in the qualified name that is nearest to
p, n is the number of identifiers in a qualified name, i is the
ordinal number of each identifier in the qualified name and
ai is the ith element of vector A.

For example, in the sentence “Please note that the call to
hits() is on the SearchResponse API,” the distance between
hits() in the sentence and the qualified name above is calcu-
lated as follows. First, the nearest location of each identifier
from p is found. If p is 7, q5 for SearchResponse is 11, and the
distance between p and q5 is 4. Assuming that a document
has only 100 words, the distances are 100 for org, elastic-
search, action and search, 4 for SearchResponse, and 0 for
hitsðÞ: [100, 100, 100, 100, 4, 0]. Finally, the average dis-
tance is calculated, which is 40. In this case, the proximity
value becomes 0.6.

Based on the similarity and proximity values, FreshDoc
calculates a metric for each qualified name as follows.

v2 ¼ similarity� proximity: (E5)

FreshDoc selects a qualified name that has the largest v2
value as the most appropriate qualified name for w in the
context of the document.

Based on our empirical observations, we made three
adjustments. First, in the proximity metric, we amplified the
impact of an identifier that has an uppercase letter (R5) by

662 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 4, APRIL 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

multiplying its distance by 5. In this case, the distance value
for SearchResponse in our example becomes 20. We experi-
mented with numbers ranging from 2 to 10 and selected 5
because we observed that when we used a multiplier smaller
than 5, FreshDoc misses some outdated API names. Second,
we filtered out the qualified names that have a proximity
value less than a threshold ud (i.e., 0.6). To find an appropriate
threshold, we experimented with v2, similarity and proxim-
ity metrics. For each metric, we set the initial threshold value
to 0.5, increased or decreased the value by 0.1, and checked
the experimental results. Finally, we determined the proxim-
ity value 0.6 as the threshold ud. Third, we considered rule R6:

(R6) If a qualified name has the tag “Latest”, it takes pre-
cedence over the other qualified names. The name’s
impact should be amplified.

We amplified the impact of a qualified name that has a
tag of “Latest” by doubling the final value v2. All of the
adjustments were made to the latest version of the docu-
mentation for the Elasticsearch project [7].

4.5.1.3 Filtering the Qualified Name. Even if a qualified name
is selected for w, it could be a mismatch. The word w could be
a legitimate dictionary word (e.g., Function, Percent, etc.) or a
library name (e.g., JTS) in the context of the document. Thus,
FreshDoc should strictly check the possibility of the selected
name to be the name forw. FreshDoc checkswhether the pack-
age name and the class name are included in the document. If
not, FreshDoc filters out the selected name and skipsw.

4.5.1.4 Determining the Outdated Name. FreshDoc deter-
mines whether the qualified name for w is outdated. If the
selected name is outdated, FreshDoc recognizes w as an out-
dated API name. If the name belongs to the declaration of
the API names of other libraries that the target library par-
tially contains, FreshDoc can exclude them by setting up the
pattern of a qualifier.

4.5.2 Updating API Names

To update an API name, FreshDoc examines the change rule
of the selected name and replaces the API name according
to the tags of the change rules, as described in Table 5. For
example, if the tag for org.elasticsearch.action.

search.SearchResponse.hits() is Replace, the simple
name hits() is replaced by the simple name getHitsðÞ of
org.elasticsearch.action.search.SearchRes-

ponse.getHits().
4.5.2.1 Updating API Names by Change Rules.When an out-

dated API name in documentation has several changes
through the revision history, FreshDoc recursively applies

the change rules to outdated API names, as indicated in the
algorithm shown in Fig. 5. Given an outdated name L (i.e.,
q:ek�1), FreshDoc finds its new name R (i.e., q:ek) by apply-
ing the update rules in Table 5 (i.e., CRHðq:ek�1Þ).

Once R has been obtained, FreshDoc checks whether the
name R belongs to the latest version Ev. If so, FreshDoc
stops the search and returns the name R. If not, the new
name R (i.e., q:ek) becomes the name to replace an outdated
name L and FreshDoc recursively finds the new qualified
name to update L. Whenever R becomes f, FreshDoc makes
suggestions, as described in Section 4.5.2.2. If the simple
names of L and R are the same at the end of the search,
FreshDoc does not make an update.

FreshDoc generates a report and a document. The gener-
ated report is a list of outdated API names with updating
information. The information provides the name of the doc-
ument, the line numbers where the outdated API name
exists, the words changed and the change rules applied, as
demonstrated by the following example:

. . . =search:asciidoc update hits at 70 from

org:elasticsearch:action:search:SearchResponse:hitsðÞ to
org:elasticsearch:action:search:SearchResponse:getHitsðÞ:
The generated document is an updated API document.

When FreshDoc reads a document d, it creates a new docu-
ment d0. While reading and checking a word from d, Fresh-
Doc writes the word to d0. If FreshDoc finds an outdated
API name, then it uses the standard html and <ins>
tags, as illustrated by the following example:

< del > hits < =del > < ins > getHits < =ins > :

The generated report enables users to inspect the find-
ings produced by FreshDoc one by one and update their
document. The generated document saves this step when
users accept all the findings.

TABLE 5
Applying Change Rules

Rule Action Rule Application

ðT;f ! RÞ
Add, Public,
Undeprecate,
Latest

The step skips the update. (If a
change rule has the Latest tag, the
change rule is from the latest
version of a target library.)

ðT;L ! RÞ
Rename,
Replace

The step replaces a simple name of
Lwith a simple name of R.

Move The step finds L in d and updates
Lwith R.

ðT;L ! fÞ

Private N/A (cf.Section 4.3.3)
Deprecate The step marks deletion of a

simple name of L.

Delete

The step finds the parents
recursively according to the class
hierarchy: (a) If none of the
parents have a member with the
same name, it marks L as deleted.
(b) If one of the parents has a
member with the same name, it
checks the tag of the change rule of
the member and applies the rule.

Fig. 5. Algorithm to find the name to replace an outdated API name.

LEE ET AL.: AUTOMATIC DETECTION AND UPDATE SUGGESTION FOR OUTDATED API NAMES IN DOCUMENTATION 663

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

4.5.2.2 Suggesting API Names. To update API names,
change rules must be utilized. However, more than half
of the change rules are found to have no new qualified
name. To compensate for it, we developed a suggestion
technique. Terragni et al. reported that developers tend
to write code snippets using API elements from the
same library package or class [57]. Using this and other
heuristics, FreshDoc makes suggestions for new API
names.

When a new name R is f, FreshDoc finds new API names
to replace the outdated API name, as shown in Fig. 5. To
select the candidate API names, the following heuristic rules
are applied:

(R1) The candidate API elements belong to the same
library package as the outdated API element or its
sub packages.

(R2) The API elements have the same code type as the
outdated API element.

(R3) The API elements belong to the latest version of the
library.

(R4) The names of the API elements are similar to the
name of the outdated API element; the names of
both share the same word.

To identify each word composing an API name in R4,
FreshDoc uses the CamelCase naming convention. Fresh-
Doc splits the API name into one or more words by regard-
ing each uppercase of the API name as the beginning letter
of a new word. For example, AvgBuilder is split into Avg
and Builder. FreshDoc then checks whether one of the
words composing each API name matches that of the out-
dated API name. For example, because AvgBuilder and
the outdated API name Metrics-AggregationBuilder
have the word Builder in common, AvgBuilder would be
the candidate API.

FreshDoc next ranks the candidate API names by count-
ing the number of occurrences of the words composing
each API name in the document. The similarity is calculated
as follows.

Similarity ¼
~A � ~B

~A
��� ��� ~B

��� ��� : (E6)

where A is a vector whose length is the number of words of
the simple API name, and all of its elements are set to 1; B is
a vector whose length is the same as that of A, and its ele-
ments are the numbers of occurrences of the words of A in
the document.

FreshDoc recommends a list of the top five ranked candi-
date updates in the generated report, as demonstrated by
the following example:

. . . update GeoBoundsBuilder tofat 14 from

org:elasticsearch . . .GeoBoundsBuilder tof

suggestion #1 : org:elasticsearch . . .GeoBoundsAggregationBuilder:

5 EXPERIMENTAL SETUP

5.1 Research Questions

To evaluate the effectiveness of FreshDoc, we designed the
following five research questions:

RQ1. How accurately does FreshDoc detect outdated API
names in the latest version of documentation?

RQ2. How accurately does FreshDoc suggest API name
updates in the latest version of documentation?

RQ3. Are the updates made by FreshDoc similar to
the human updates found in the revisions of
documentation?

RQ4. To what extent do developers accept FreshDoc
suggestions?

RQ5. How much time is required to obtain results from
FreshDoc?

5.2 Systems for Evaluation

We selected systems for evaluation based on the following
criteria. First, such systems should be active, Java-based,
open source projects. We selected projects with more than
50 contributors, which implies that the projects are not triv-
ial but interesting to many people. Second, the projects
should maintain an issue tracking system so that we can
report outdated documentation issues. Third, the projects
should maintain manually written documentation as a part
of the software revision histories. This requirement allows
us to investigate the manual updates of API documentation
for RQ3. To select such projects, we first looked into trend-
ing projects in GitHub,8 starting with the top-ranked proj-
ect. We then checked whether the project has an issue
tracking system and maintains its documentation in its revi-
sion histories.

As a result, four projects from the GitHub site were
selected [38], [39], [40], [41]. Table 6 presents the subject
information. The subject section presents the projects and
their latest versions. For example, the latest version of the

TABLE 6
Details of the Systems

Subject Source Code (Java) Revision Documentation

Project Version #Files #Lines #Classes #Methods #Commits #Files #Lines

Elasticsearch 6.0.0-beta2 5,447 679,327 9,982 64,207 28,718 101 4,385
Spring-boot 2.0.0.M3 3,554 215,649 6,185 22,921 13,266 20 18,042
Hibernate-orm 5.2.11 9,103 662,007 12,552 72,036 8,075 394 39,482
Logback 1.2.3 1,120 57,263 1,263 6,111 3,740 152 53,001

Average 4,806 403,562 7,496 41,319 13,450 167 28,728

8. Trending, https://github.com/trending/java?since¼monthly

664 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 4, APRIL 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

https://github.com/trending/java?since=monthly
https://github.com/trending/java?since=monthly

Elasticsearch project was 6.0.0-beta2. The source code sec-
tion presents the sizes of these projects. On average, the
source code contains 4,806 files. The revision section
presents the number of commits analyzed from the revision
histories. On average, these projects contain 13,450 commits.
The documentation section presents the size. On average,
the documentation contains 167 files. The documentation is
on the GitHub site [7], [8], [9], [10].

We could not find well-defined structures governing the
format and contents of the manually written documenta-
tion. The documentation of Elasticsearch and Spring-boot is
prepared using wiki markups. Hibernate-orm’s was pre-
pared in XML and ADOC. Logback’s is in HTML. The docu-
mentation uses different marks to distinguish among code
snippets (e.g., dashes, pre-tags and programlisting tags
with CDATA). The contents not only describe the API
usages but also explain the configurations. The documenta-
tion does not describe API declarations that autogenerated
documentation (e.g., JavaDoc) would typically describe.

5.3 Measurements

Based on the differences betweenAPIdocumentation versions
and our manual inspection of the latest version, we obtained
true positives ðtpÞ, false positives ðfpÞ and false negatives ðfnÞ
of the number of outdated API locations. We calculated the
precision ðP Þ, recall ðRÞ and F-measure ðF Þ as follows:

P ¼ tp

tpþ fp
R ¼ tp

tpþ fn
F ¼ 2� P �R

P þR
:

5.4 Procedure

5.4.1 Evaluation of RQ1

RQ1 evaluates the effectiveness of detecting outdated API
names in documentation. RQ1 is important because it is a
prerequisite for updating outdated API names. To assess
the effectiveness of FreshDoc, we compare it with the two
state-of-the-art methods DocRef [2] and AdDoc [12] in
terms of the detection accuracy. The three techniques pro-
posed different criteria for the detection of outdated API
names in their documentation. DocRef detects an API
name e in the documentation as an error (e.g., an outdated
API name), when the API name e is neither in the latest
version of the library nor declared in its documentation
[2]. AdDoc detects an API name e in the documentation as
a removed API name (i.e., an outdated API name) when e
is linked to one of the code elements that have been
removed between two versions [12]. FreshDoc detects an
API name e in the documentation as an outdated API
name when e is not in the latest version but in the software
revision history.

We reimplementedDocRef andAdDoc becausewe are not
able to utilize the original tools directly. DocRef [2] was not
available online, and the authors also confirmed that the code
was not available. AdDoc [12] was available online, but it
was outmoded in the given configuration. Thus, we imple-
mented AdDoc’s algorithm, especially Algorithm 4 in [12].
In our reimplementation, we focused on the differences
betweenmechanisms, not onminor differences. For example,
DocRef uses <pre> or <p> tags to extract code snippets.
However, in the manually written documentation, it is

difficult to extract code snippets by using these tags. There-
fore, we used our improved method of extracting code snip-
pets in the DocRef implementation. The details are irrelevant
to the criteria, as described above.

To measure the detection accuracies of DocRef [2],
AdDoc [12] and FreshDoc, we applied them to the latest
versions of the documentation of the systems in Table 6. For
example, we ran our DocRef implementation over the 6.0.0-
beta2 version of the Java API documentation of the Elastic-
search project [7] and obtained documentation errors. We
then evaluated whether the documentation errors are out-
dated API names. The detailed procedure used to study
RQ1 was as follows:

(1) We ran each tool to detect outdated API names in
the documentation of a subject and obtained their
reports.

(2) We first investigated the documentation and verified
whether the reported API names refer to code
elements.

(3) If the reported API names refer to code elements in
the documentation, we then searched the code ele-
ments in the latest version of the project and verified
whether the elements exist.

(4) If the elements were found not to exist, we regarded
them as outdated API names. To reconfirm our
finding, we manually searched for the elements in
Google and examined whether there were discus-
sions on the outdatedness of the API elements. We
also checked them in the revision histories.

(5) Because it is infeasible tomanually detect outdatedAPI
names among numerousAPI names in the documenta-
tion, we collected all of the outdated API elements that
were detected by the three tools and confirmed as out-
dated.We regarded the collection as truths.

(6) Using the grep tool, we searched each API name of
the collection in the documentation and expanded
the set of truths.

We used the three metrics described in Section 5.3. In the
metrics, the denominator of P (i.e., tpþ fp) is the number of
outdated API names reported by each tool. The denomina-
tor of R (i.e., tpþ fn) is the number of truths. The numerator
of P and R (i.e., tp) is the number of outdated APIs reported
by each tool and confirmed to be outdated by the set of
truths.

As mentioned in (5), manually detecting outdated API
names is infeasible. Therefore, as a set of truths, we used the
subset of the union of the predictions made by the three
tools that we verified to be correct. Our recall value can be
used to compare the relative performance of the three tools.
In the future, the researchers may be able to choose one of
two options to calculate their recall values. First, the
researchers can demonstrate the excellence of the proposed
method by performing relative comparisons as we have
done. Second, based on the outdated APIs found by our
method, the researchers can extend the dataset for calculat-
ing the recall. We discuss such a usage in Section 7.

5.4.2 Evaluation of RQ2

RQ2 evaluates the effectiveness of updating API names
in documentation. This is a novel capability of FreshDoc.

LEE ET AL.: AUTOMATIC DETECTION AND UPDATE SUGGESTION FOR OUTDATED API NAMES IN DOCUMENTATION 665

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

Because DocRef [2] and AdDoc [12] cannot update API
names, we have no comparable tools for RQ2. We per-
formed two evaluation steps to assess RQ2:

First, we calculated how precisely FreshDoc identified
change rules for the outdated API names.

(1) We let FreshDoc update the documentation of each
subject and obtained the document updates.

(2) We examined the report generated in Section 4.5.2.
Because the report included the qualified names
recovered from the simple names in documentation,
we manually verified whether the outdated API
names found in Section 5.4.1 are correctly associated
with the appropriate qualified names.

(3) Once the simple name in documentation was recov-
ered to the appropriate qualified name, we deter-
mined that we identified a correct change rule.

In the calculation, the denominator of P (i.e., tpþ fp) is the
number of outdated API names identified by FreshDoc and
confirmed to be outdated by the set of truths. The numerator
ofP (i.e., tp) is the number of change rules correctly identified.

Second, we calculated how many API names were cor-
rectly replaced with new ones.

(4) We traced the changes of API names in the revision
history and checked the changes from the outdated
API names to new API names.

(5) We verified whether the new API names exist in the
latest version. If the API names exist, we decided
that the updates are correct. If not, we decided that
the updates are incorrect.

In the calculation, the denominator of P (i.e., tpþ fp) is
the same as the previous denominator. The numerator of P
(i.e., tp) is the number of API names correctly replaced with
new API names. Because we did not have a set of truths for
RQ2, we only calculated the precision metric.

5.4.3 Evaluation of RQ3

RQ3 compares the updates suggested by FreshDoc with the
human updates found in the documentation revisions.
Because each project includes its documentation folder in
the revision history, we can identify developers’ manual
updates through the revisions of the documentation. We
treated the manual updates as the ground truths. Based on
these manual updates, we evaluated the effectiveness of
FreshDoc. This evaluation supplements the evaluations of
RQ1 and RQ2, which only used the latest version of docu-
mentation and thus had no ground truths.

For this evaluation, we selected multiple versions of doc-
umentation from the base version to the latest version of
each project shown in Table 7. For example, we selected the

versions from 5.0.0 to 6.0.0-beta2 of the Elasticsearch project.
We then adopted the following procedure:

(1) We created a tool to analyze differences between the
multiple versions of the documentation. The tool
extracts the differences related to code changes by
checking whether the changed content includes sim-
ple API names.

(2) We reviewed the generated list of changes, manually
excluded minor differences (e.g., typos and polish-
ing) and created the list of ground truth updates.

(3) We ran FreshDoc over the base version of API docu-
mentation (e.g., the Java API documentation version
5.0.0 of the Elasticsearch project). We obtained the
document updates of FreshDoc.

(4) Based on the list of ground truth updates, we evalu-
ated whether FreshDoc correctly updated the out-
dated API names. The ground truths of the outdated
API documentations we used in the evaluation are
available online [58].

Table 7 presents the number of manual updates found
among documentation versions. For example, we found 31
manual updates between the versions of the Elasticsearch
project. We conducted this evaluation for the projects that
have API updates as specified in Table 7.

We applied the three metrics in Section 5.3 to this evalua-
tion, conducted based on the past versions. In themetrics, the
denominator of P (i.e., tpþ fp) is the number of outdatedAPI
names reported by FreshDoc in past versions. The denomina-
tor of R (i.e., tpþ fn) is the number of ground truths. The
numerator of P and R (i.e., tp) is the number of reported API
names confirmed as outdated by the set of ground truths.

5.4.4 Evaluation of RQ4

RQ4 collects developers’ responses to the FreshDoc sugges-
tions. The developers, who are knowledgeable about the
projects, could accept or reject the suggestions. They could
also regard the suggestions as major or minor. Through
their responses, we determined whether the FreshDoc sug-
gestions are useful to developers in practice. We adopted
the following procedure:

(1) To avoid burdening developers, we decided to
report the true positives that we identified from the
previous evaluations (cf. Sections 5.4.1 and 5.4.2).

(2) We regarded the outdated API names appearing in
multiple locations in the documentation to be more
important than the API names appearing in one loca-
tion. We thus decided to report the API names
appearing in multiple locations.

(3) We posted the FreshDoc suggestions to the issue
tracking systems and gathered the developers’
feedback.

We repeated this evaluation several times because the
documentation and the source code of each project evolved
through our research period. We reported our findings in
several versions of the projects shown in Table 6.

5.4.5 Evaluation of RQ5

RQ5 asks about the time performance of FreshDoc. We mea-
sured the time required to complete each step of FreshDoc

TABLE 7
API Updates Between Two Versions of the Systems

Subject

Project Base Ver. Latest Ver. #API Updates

Elasticsearch 5.0.0 6.0.0-beta2 31
Spring-boot 1.5.7 2.0.0.M3 30
Hibernate-orm 4.0.0-beta1 5.2.11 11
Logback 1.1.0 1.2.3 1

666 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 4, APRIL 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

per project using a computer with a 3.7-GHz processor,
32 GB of SDRAM and 512 GB of flash storage.

6 EVALUATION RESULTS

6.1 Accuracy of Detecting Outdated APIs

This section reports the accuracies of DocRef, AdDoc and
FreshDoc in the detection of outdated API names. Table 8
shows the results. For example, for the Elasticsearch project,
11 true positives (#T) were found by the three tools. DocRef
reported 85 outdated API names (#P). Among them, 4 were
true positives (#TP). Therefore, the precision of DocRef was
0.05 (P). Because 7 of 11 were not found (#FN), DocRef’s
recall was 0.36 (R). Likewise, AdDoc reported 17 outdated
API names for the Elasticsearch project, 4 of which were
determined to be true positives. Therefore, the precision
and recall of AdDoc were 0.24 and 0.36, respectively. Fresh-
Doc reported 7 outdated API names, 6 of which were deter-
mined to be true positives. The precision and recall of
FreshDoc were 0.86 and 0.55, respectively.

In total, DocRef reported 3372 outdated API names, 99 of
which were true positives. As a result, DocRef achieved 3
percent precision and 50 percent recall, as shown in the last
row of Table 8. DocRef produced many false positives. The
tool’s detection criterion is to check whether an API name is
not in the latest library version and not declared in the doc-
umentation. Under that criterion, DocRef incorrectly identi-
fies user-defined terms and other third-party API names as
errors. For example, DocRef detects MongoDB, Neo4j, Her-
oku, Atomikos, Envers, and ManyToMany as errors. In
addition, DocRef sometimes misclassifies text descriptions
as code snippets and does not properly parse the misclassi-
fied descriptions. For that reason, DocRef may miss API
names in the text descriptions (e.g., client. prepare-

Search) and yield false negatives as well. We note that we
excluded typos from the DocRef evaluation results.

AdDoc reported 96 outdated API names, 18 of which
were true positives. AdDoc achieved 19 precision and
9 percent recall. Interestingly, while AdDoc yielded
100 percent precision for the Logback project, it yielded
0 percent precision for the Hibernate-orm project. The rea-
son is that when detecting outdated API names, AdDoc
links API names to the elements that have been deleted
between two code releases and does not link API names to
the elements in the latest version. For example, MyEntity
is detected as an error for Hibernate-orm, but the named
interface exists in the latest version. AdDoc is prone to false
positives when developers maintain many elements with
the same names across projects and libraries and repeatedly
move classes from one package to another. Moreover,
AdDoc produces false negatives because it uses a limited
number of releases. We note that in our AdDoc experiment,
we used multiple releases, on average 11	2.6. Still, the tool
yielded the lowest recall value among the three methods.

FreshDoc reported 123 outdated API names, 97 of which
were true positives. FreshDoc achieved 79 precision and
49 ercent recall. Compared with DocRef, FreshDoc demon-
strated a significantly higher precision, as shown in Fig. 6a.
The main reason for the high precision is the detection crite-
rion of FreshDoc, which checks whether an API name has
been declared in the past revision history of the source
code but not in the latest library version. Thus, FreshDoc
excludes library names, other API names outside the target
library and any other user-defined terms. FreshDoc also
shows a significantly higher precision than does AdDoc.
The reason is that FreshDoc also selects an appropriate qual-
ified name, which exists through the latest version and its
revisions, for an API name in documentation.

FreshDoc showed a slightly lower recall than DocRef did
but a significantly higher recall than AdDoc did, as shown
in Fig. 6b. The main reason for the higher recall resides in
the utilization of the entire software revision histories.

TABLE 8
Evaluation Results of Detecting Outdated APIs in the Latest Version

All DocRef AdDoc FreshDoc

Project #T #P #TP #FP #FN P R #P #TP #FP #FN P R #P #TP #FP #FN P R

Elasticsearch 11 85 4 81 7 0.05 0.36 17 4 13 7 0.24 0.36 7 6 1 5 0.86 0.55
Spring-boot 54 1515 9 1506 45 0.01 0.17 71 10 61 44 0.14 0.19 48 41 7 13 0.85 0.76
Hibernate-orm 95 834 59 775 36 0.07 0.62 4 0 4 95 0.00 0.00 59 42 17 53 0.71 0.44
Logback 37 938 27 911 10 0.03 0.73 4 4 0 33 1.00 0.11 9 8 1 29 0.89 0.22
Total or Average 197 3372 99 3273 98 0.03 0.50 96 18 78 179 0.19 0.09 123 97 26 100 0.79 0.49

#T denotes the number of true positives that all of the three tools found, #P the number of positives that each tool found, #TP the number of true positives, #FP the
number of false positives, and #FN the number of false negatives. P denotes Precision and R Recall.

Fig. 6. Precision, recall and F-measure of detecting outdated API names.

LEE ET AL.: AUTOMATIC DETECTION AND UPDATE SUGGESTION FOR OUTDATED API NAMES IN DOCUMENTATION 667

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

The static analysis of code snippets and the selection of
qualified names based on contextual information also help.
When code snippets are extracted accurately, FreshDoc
refers to the structural information extracted from revision
histories. When the contextual information of API names in
the documentation is sufficient to select an appropriate
qualified name, FreshDoc selects the qualified name based
on contextual information from both code snippets and text
descriptions. Thus, although FreshDoc might misclassify
text descriptions to code snippets, API names even in the
misclassified descriptions can be identified. However, due
to contextual selection, FreshDoc misses some outdated API
names in documentation.

We characterize when FreshDoc works well. The tool
works well when its target project has a long history of code
revisions, code snippets are not classified into text descrip-
tions, and the contextual information of API names in docu-
mentation is sufficient to select a qualified name. We also
characterize when DocRef and AdDoc work better than
FreshDoc. Thus, DocRef might work better when its target
project has a short history of code revisions, and the docu-
mentation has well-defined rules, such as the autogenerated
documentation by JavaDoc. In particular, when the target
documentation does not contain many user-defined terms,
the accuracy of DocRef would be higher. AdDoc might
work better when API names are sufficiently unique to
select qualified names by analyzing the differences between
two releases, and the differences do not contain the cases in
which the developers moved code elements from one pack-
age to another.

In summary, as shown in Fig. 6c, FreshDoc yielded a
higher detection accuracy (60 percent F-measure) than did
AdDoc (12 percent) and DocRef (6 percent) when detecting
outdated API names.

6.2 Accuracy of Updating APIs

After detecting outdated API names in the documentation,
the next task is to update the API names. The evaluation on
updating the API names consists of two steps, as described

in Section 5.4.2. The first step is to evaluate how precisely
FreshDoc identified change rules for the outdated API
names. Given the true positives of FreshDoc in Section 6.1,
we found that once outdated API names have been
detected, the matched change rules will be correct. With
the correct rules, all of the outdated API names are marked
in the documentation. Therefore, the precision for RQ2 is
100 percent. This result guarantees that the outdated API
names have not been updated with incorrect API names.

The second step is to evaluate how many of the outdated
API names are updated with new API names. To that end,
we refined the updates into simply deleted API names that
have no new names (#D), the updated API names with new
names based on change rules (#R) and the API names that
have name suggestions based on heuristic rules (#S). Table 9
summarizes the results. For example, regarding 6 true posi-
tives (#TP), the Elasticsearch project contains 3 simply
deleted API names (#D), 2 replaced (or renamed) API names
(#R) and 1 API name that has suggestions (#S).

Of a total of 95 outdated API names (#TP), 61 API names
(#D) were simply deleted (64 percent), 10 API names (#R)
were updated with new API names (11 percent), and 24
API names (#S) have suggestions based on heuristic rules
(25 percent). Five of the suggestions turned out to be false
(5 percent), which means the suggestions for an API name
do not include the new API name to correctly replace with.
With regard to the replaced API names (#R), FreshDoc
updates the outdated API names with new API names by
using change rules. With regard to the API names that have
suggestions (#S), FreshDoc applies a deletion mark and
reports its suggestions. For the simply deleted API names
(#D), FreshDoc simply applies a deletion mark. This update
can indicate that the detected API names were simply
deleted from the code. While this result does not guarantee
that the updated text is workable, FreshDoc does inform
readers that the updated text is outdated due to API
deletion.

Figs. 7 and 8 show examples of the updates made by
FreshDoc in documentation. Fig. 7 shows an update in
the Elasticsearch document. FreshDoc detects the out-
dated API name AggregatorBuilder in a code snippet
and suggests AggregationBuilder for the replace-
ment of AggregatorBuilder. Fig. 8 shows updates
made to the Hibernate-orm document. FreshDoc sug-
gests changing the name Synchronization to Inva-

lidationSynchronization. The problem we found
in these updates is that these documents were written in
AsciiDoc. To resolve that issue, we wrapped the used
HTML tags with the 00 þ þ þ 00 mark for AsciiDoc to
include raw html. If there was a code block, we placed
“[subs ¼ “quotes”]” before the block.

TABLE 9
The FreshDoc Results for Updated APIs

Project #TP #D #R #S

Elasticsearch 6 3 2 1
Spring-boot 39 31 8 0
Hibernate-orm 42 20 0 22
Logback 8 7 0 1
Total 95 61 10 24

#D denotes the number of deleted APIs, #R the number of updated APIs with
new names, and #S the number of APIs that have suggestions.

Fig. 7. Code snippet updated by FreshDoc.

668 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 4, APRIL 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

In summary, FreshDoc correctly updated 31 percent of
the detected API names with new API names. The tool cor-
rectly updated 11 percent of the detected API names with
change rules and suggested new names for 20 percent of the
API names. FreshDoc also correctly marked all of the
detected API names in the documentation.

6.3 FreshDoc vs. Human Updates

Based on the 73 API manual updates in Table 7 of Section
5.4.3, we compared the FreshDoc updates with manual
updates. We found that the FreshDoc detected 60 of the 73
manual updates, as shown in Table 10. We also found that
32 of the updates contained the new API names that
replaced the outdated ones. Fifteen of them directly con-
tained new APIs in the documentation, as shown in Fig. 9b.
Eleven of them were marked “Deleted”, as shown in Fig. 9d
but had new API suggestions in the generated report.

The comparison revealed the promising result that some
of the automatic updates obtained using change rules are
similar to human updates. Fig. 9 illustrates this result. The
manual update, shown in Fig. 9a, replaces ExecutionCon-
text with InterpretationContext. The FreshDoc
update in Fig. 9b also shows that ExecutionContext has
been replaced by Interpretation-Context. The same
result is obtained, but the manual update contains more
changes. For example, the manual update additionally
imports org.xml.sax.Locator, and the Action class
extends ContextAwareBase. A change rule cannot sup-
port these changes.

The manual update in Fig. 9c shows the replaced class,
AvgAggregationBuilder. However, the FreshDoc update
in Fig. 9d shows that MetricsAggregation-Builder has
been deleted. Thus, themechanismof using change rules fails
to find the new API name to replace MetricsAggrega-

tionBuilder (cf. Section 4.5.2.1). In that case, the

mechanism of using heuristic rules can work (cf. Section
4.5.2.2). Thus, the report generated by FreshDoc suggested
AvgAggregationBuilder as the top-ranked recommen-
dation to replace MetricsAggregationBuilder.

However, our suggestion technique based on the heuris-
tic rules consistently recommends the correct new APIs.
The six recommendations of the Hibernate-orm project do
not include the correct new APIs.

In summary, FreshDoc detected 60 of the 73 manual
updates (82 percent). FreshDoc also updated or suggested
32 of the 53 API names with new API names (60 percent).
Of the 32 suggested APIs, 26 were correct (81 percent).

6.4 Developers’ Feedback

We have reported 40 outdated API names with the sugges-
tions made by FreshDoc to the issue tracking systems [59],
[60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70]. Devel-
opers accepted 30 of the 40 suggestions (75 percent) and
made subsequent updates to the concerned API documenta-
tion. Developers responded to our suggestions as follows.

Fig. 8. Text description updated by FreshDoc.

Fig. 9. Comparison of manual updates and FreshDoc updates.

TABLE 10
The FreshDoc Results of Detecting Outdated APIs

in the Past Versions and Updating Them

Subject Detecting
Outdated APIs

Updating the
Detected APIs

Project #MU #TP #D #R #S

Elasticsearch 31 23 13 3 7
Spring-boot 30 29 14 11 4
Hibernate-orm 11 7 1 0 6
Logback 1 1 0 1 0
Total / Average 73 60 28 15 17

#MU denotes the number of manual updates found in Section 5.4.3. #TP the
number of true positives, #D the number of deleted API names, #R the number
of updated API names, #S the number of API names that have suggestions.

LEE ET AL.: AUTOMATIC DETECTION AND UPDATE SUGGESTION FOR OUTDATED API NAMES IN DOCUMENTATION 669

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

(1) Elasticsearch project [38]: Whenwe posted the question,
“Is the IndexResponse.matches method outdated?” [59], a
contributor replied, “Thanks. [I] will fix it,” and subse-
quently fixed it. The contributor left a message saying,
“Docs: IndexResponse.matches () does not exist anymore.
Since 1.0, percolator has been redesigned so percolator is not
applied anymore at index time.” When we reported four
outdated API names found in version 1.4.4 [60], con-
tributors responded, “Thanks for reporting this. I’ll check
that. We might have missed some part of the doc while doing
[the code change] #8667,” and then updated the docu-
mentation. We also reported five outdated API names
found in version 6.0.0 [61]. Contributors responded,
“You are right indeed. The first two are leftovers from
#18377; the third item is a leftover from #17650,” and then
created two separate tickets for the updates.

(2) Spring-boot project [39]:We placed several posts asking
whether the FreshDoc suggestions were correct [62],
[63], [64], [65]. A contributor responded, “Well spotted,
thanks. The documentation should refer to Configurable-
EmbeddedServletContainer” [62]. Another contributor
responded, “Thanks. You’re right. It was renamed from
AutoConfigurationReport to ConditionEvaluationReport”
[63]. Regarding the issue [64] in which we reported
three outdated API names found in version 1.2.2, con-
tributors discussed and added the updating tasks to
their milestone for the next release. We finally
reported four outdated API names found in version
2.0.0.M3 [65]. The contributors commented, “Looks like
we missed these during the big web stack refactor,” and
then accepted two of them.

(3) Hibernate-orm project [40]: We posted, “Is jack-event-reg-
example outdated?” in which we reported five outdated
API names in the example and suggested new API
names [66]. The corresponding contributor replied,
“Looks such as you’re correct.” We also reported four
outdated APIs in another issue report [68]. The con-
tributors fixed all of them.

(4) Logback project [41]: We posted, “Docs: Are there out-
dated APIs (e.g., SocketRemote) in the site?”, in which
we reported four outdated API names including
Execution-Context of Fig. 3 and suggested new
API names [69]. A contributor fixed the outdated
API names and asked, “Finding such stale references
seems pretty difficult. How did you do it?” We also
reported two additional outdated API names found
in version 1.2.3. Contributors added the issue report
to the milestone for version 1.3.0-alpha4 [70].

Regarding the 10 unaccepted API names [64], [65], [67],
we found that four were incorrect [64], [65]. Contributors
commented that one API name was still used and another
was the name of a bean, not an API element [64]. The con-
tributors also replied that one API name was not outdated
and another had been relocated to another library [65].
When we reported six outdated API names, the contributors
commented that the issue was no longer relevant because a
new user guide had been rewritten from scratch [67].

In summary, developers accepted 30 of the 40 sugges-
tions (75 percent) made by FreshDoc and subsequently
updated their documentation. Only 4 of the 40 suggestions
turned out to be incorrect.

6.5 Performance

We measured the execution time of FreshDoc. Table 11
presents the execution time of FreshDoc with the systems.
FreshDoc took 2 hours 18 minutes and 29 seconds with the
Elasticsearch project and less than one hour with the other
projects. Because the Elasticsearch project had the greater
number of commits, the time needed by FreshDoc appears
to be sensitive to the number of revisions.

As indicated in Section 4.2, we decided not to extract the
entire source code from each revision and not to use natural
language parsers. We observed that these factors negatively
contributed to the performance of FreshDoc. For example,
when we used existing call analysis approaches (e.g., HiMa
[49] and AURA [50]) that analyzed the entire version of a
software system, we encountered crashes. To make an
objective observation on the overhead, we implemented the
checkout of the entire source code from each revision. We
found that the simple checkout took 5 hours 24 minutes and
50 seconds. We also made Hunspell, a natural language
parser adopted by DocRef, to analyze the documentation of
each project. The analysis took 56 minutes and 51 seconds.
The alternatives are estimated to take more than twice the
time required by FreshDoc.

From our perspective, the execution time is sufficient for
the FreshDoc application. Users can obtain the final report
and the updated documentation at the end of execution. In
addition, to reduce the execution time, we can identify addi-
tional approaches. Users can reuse the extracted change
rules for updating different documentation and can also
allow FreshDoc to incrementally extract change rules when-
ever a new code change is committed.

7 DISCUSSION

We discuss how FreshDoc can be used and applied. Fresh-
Doc detects, reports and marks outdated API names in doc-
umentation. The report generated by FreshDoc reduces
library developers’ effort in updating the parts of the docu-
mentation by indicating where the outdated API names
exist in the documentation. The documentation with the
outdated API names marked by FreshDoc also helps appli-
cation developers become aware of outdated API names in
documentation and be cautious about the errors caused by
the outdated API names. In addition, FreshDoc suggests
new API names to replace outdated API names in documen-
tation. Such suggestions reduce developers’ efforts in find-
ing new alternative API names.

The use of FreshDoc is not limited to developers’ API
references and updates in API documentation. For example,
FreshDoc can help test engineers as follows. Consider a sce-
nario in which a development team and a testing team are

TABLE 11
Execution Time (in hh:mm:ss)

Project Step 1 Step 2 Step 3 Total

Elasticsearch 2:11:28 0:06:51 0:00:10 2:18:29
Spring-boot 0:21:46 0:00:47 0:00:23 0:22:56
Hibernate-orm 0:51:12 0:02:50 0:01:11 0:55:13
Logback 0:04:39 0:01:28 0:00:36 0:06:43

670 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 4, APRIL 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

dedicated to a software project, and the development team
requests the testing of the source code by passing the code
and documentation to the testing team. When a test engi-
neer receives the source code and the documentation
describing it, the test engineer can pre-validate the outdated
parts of the documentation and request the development
team to correct them. Such corrections reduce test engi-
neers’ effort by avoiding the development of incorrect test
cases with reference to outdated documentation.

FreshDoc can also be applied to the Q&A posts of StackO-
verflow.We verified that ability by applying FreshDoc toQ&A
posts and posting our sample [71]. Marking outdated API
names in the posts can help developers referring to these posts
recognize the outdatedAPI names in the question and answers
and recognize invalid answers. Such recognition would pre-
vent developers from consulting erroneous answers.

In addition, FreshDoc can help researchers collect data
related to outdated API names. Once researchers find out-
dated API names with FreshDoc, it is easy to track down the
discussions on the outdated API names. In fact, we found
errors caused by outdated API names [24], [25], [26], [27],
[28], [29], [30] through a search of the API names detected by
FreshDoc. Researchers can collect such data to analyze how
many discussions are on outdated API names, what types of
errors occur, and how long it takes to fix them. The collection
of data related to outdated API names can provide a basis for
studying the impact of outdatedAPI elements.

Finally, our research can be extended in at least three
new directions. First, our work can be extended to detect
and update references to various changes to code (e.g.,
method parameter changes, exception handling changes, or
inheritance relationship changes). Second, our research can
be extended to other types of documentation. For example,
a design document may not refer to exact API names, but it
is likely to refer to similar terms used in creating API names.
By tracing the relationships, it would be possible to detect
outdated parts of the design document. Third, our work can
also be extended to automatically update relevant code and
test cases. For example, the method calls in the client code
or test cases can be automatically updated according to the
evolution of the framework.

8 RELATED WORK

Automatic techniques for API documentation can be broadly
divided into three categories: documentation generation [72],
[73], [74], [75], documentation error detection [2], [76] and trace-
ability between code anddocumentation [12], [42], [43], [55].

Techniques in the first category analyze source code and
generate documentation [72], [73], [74], [75]. For example,
ARENA [74] summarizes code changes and issue reports by
analyzing and linking them and generates release notes
between two releases. DeltaDoc [72] combines symbolic
execution and code summarization techniques to briefly
describe code changes and then generates a log message.
Other tools automatically generate descriptions of methods
or classes [73], [75]. However, these techniques are limited
to recovering the missing parts of documentation with no
capability of locating and updating outdated APIs. Fresh-
Doc differs from these techniques in that it locates API
errors and marks them in a given documentation.

Techniques in the second category detect errors in API
documentation [2], [76]. For example, DocRef [2] detects
API documentation errors by combining a natural language
processing engine with an island parser. DocRef first detects
typographical errors in text descriptions and recovers the
qualified names of API names in code snippets. DocRef
then excludes the APIs of the latest version of a library and
the API names declared in the documentation and finally
identifies the remaining names as errors. However, DocRef
can report many false alarms because its documentation
errors still contain many other user-defined terms. Subse-
quently, Zhou et al. proposed an approach for detecting
defects in the directive statements of API documentation
[76]. Their method analyzes both code and API documenta-
tion and extracts first-order logic constraints from both. If
the constraints are inconsistent, the method reports the
directive defects. These techniques use a single version of
code and documentation as the input. In contrast, FreshDoc
analyzes the entire revision history, which helps detect out-
dated API names accurately. For example, while DocRef
fails to filter out many user-defined terms from the docu-
mentation errors, FreshDoc can do so because such terms
are not API names in the history. FreshDoc also differs from
the approach of Zhou et al. approach in that it focuses on
detecting and updating outdated API names.

Techniques in the third category recover and utilize the
traceability between code and documentation [12], [42] [43],
[55]. For example, AdDoc [12] suggests documentation pat-
terns based on the traceability between code and documen-
tation. AdDoc reads two releases of source code and
documentation, analyzes documentation patterns of the
releases, identifies the differences and suggests documenta-
tion additions and deletions. In particular, the deletion algo-
rithm, whose role is similar to that of FreshDoc, links the
code terms in the later version of the documentation to code
elements in the earlier version of the code. AdDoc then finds
the links to the elements that are removed between the ear-
lier and later versions of code and identifies the outdated
APIs in the later version of documentation. However,
AdDoc mainly focuses on the differences between two spe-
cific releases. Thus, AdDoc’s applicability is also very
restricted because it is based on two unrealistic assump-
tions, i.e., that the documentation and code have been syn-
chronized in the previous release and that the differences
between two releases are minor. In addition, AdDoc is
prone to making incorrect links between APIs and code
terms, especially when the APIs deleted between the
releases have the same names as the APIs in the latest ver-
sion. The code terms, which must be linked to the APIs in
the latest version, are mistakenly linked to the deleted APIs
with the same name. Unlike AdDoc, FreshDoc extracts all
API names from the entire software revision histories,
including the latest version, and selects the most appropri-
ate API name to be linked to a code term in documentation.

In the same category, Baker links StackOverflow posts to
API documentation [43]. Baker inputs the posts, constructs
a partial abstract syntax tree from code snippets, and identi-
fies the qualified names for the code-like terms by travers-
ing the AST. Baker then pairs the code-like terms in code
snippets in StackOverflow with the qualified API names in
API documentation. However, Baker is limited to adding

LEE ET AL.: AUTOMATIC DETECTION AND UPDATE SUGGESTION FOR OUTDATED API NAMES IN DOCUMENTATION 671

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

the links of code examples to the API documentation, leav-
ing the following question unanswered: What if APIs are
deleted or renamed? Moreover, Baker must wait until users
upload examples to StackOverflow to add new links of
examples. FreshDoc does not require waiting for user-pro-
vided examples.

In contrast, our work could be related to call analysis
between releases [48], [49], [50] as well as the transformation
of code changes [77], [78]. First, to analyze call changes,
SemDiff [48] and AURA [50] analyze two releases of a soft-
ware system. However, these approaches yield inaccurate
change rules [48], [49]. HiMa [49] analyzes all of the releases
from a revision history. While HiMa yields a higher accu-
racy, it suffers from performance issues, such as crashes,
while analyzing dozens of versions of systems. The reason
for these crashes is that HiMa requires the entire code of
each release to extract the qualified names of the called
APIs. [49]. Our work differs from the reported study in that
our call analysis analyzes only the changes between two
revisions. Second, to transform code changes, LASE trans-
forms code changes from one code example to another [77].
LASE extracts edit operations (i.e., insert, delete, move and
update) from an example and applies the operations to
another. Likewise, MUSE extracts code examples of a
library from its clients, selects representative examples and
augments JavaDoc with those examples [78]. FreshDoc dif-
fers from these methods in that it mines API implementa-
tion changes in revision histories and locates and derives
the API updates to synchronize the documentation to the
latest APIs of a given library.

Taken together, none of the techniques in these three cat-
egories mark outdated API names in documentation and
suggest the latest APIs for replacing outdated APIs. More-
over, FreshDoc can detect outdated API names in documen-
tation with a significantly higher accuracy than that
achieved by DocRef and AdDoc.

9 THREATS TO VALIDITY

Themanual labelling of the outdated API names as correct or
not in the evaluation results may raise threats to internal
validity. To mitigate the subjectivity of our manual labelling,
we inspected the differences between two API implementa-
tion versions and analyzed the associated code and change
histories. We also asked project developers for confirmation.
Another threat is the versions of DocRef and AdDoc that we
used in this work, which may yield a higher or lower detec-
tion accuracy than the original versions reported in [2], [12].
Tomitigate the differences between the original and the reim-
plemented versions, we implemented all rules identified in
the papers [2], [12]. It should also be noted that the false posi-
tives arose not from the implementation details but from the
characteristics of DocRef and AdDoc. For example, DocRef
identifies user-defined terms as APIs, which leads to false
positives. AdDoc identifies the elements removed between
two releases as outdated APIs. When the latest release has
code elementswith the same names as the removed elements,
AdDoc yields false positives.

The selection of all target projects from the GitHub site
may trigger threats to external validity. We alleviate the
threats by selecting large-sized systems with objective

selection criteria. Another concern is that systems for evalu-
ation may have been used as part of the FreshDoc develop-
ment. We clarify that we used the Elasticsearch project for
verifying each phase of the FreshDoc approach but did not
use the other projects for that purpose; moreover, the differ-
ences in accuracy between the four projects were not signifi-
cant. FreshDoc was applied to the manually written API
documentation of a Java project. Although such a project
has a different format of documentation from those of
the projects used in our evaluation, FreshDoc can still be
applied to detect outdated APIs. Nevertheless, some cus-
tomization could help update outdated APIs in that format
and maintain the same level of update accuracy. For exam-
ple, setting a particular document delimiter can help distin-
guish code snippets from text descriptions (Section 4.4.1).
Additionally, establishing the pattern of a qualifier for
a project can narrow down the candidate API names
(Section 4.5.1.4). Finally, setting addition and deletion
marks can be customized according to the documentation
format (Section 4.5.2.1). The customization effort is small in
applying FreshDoc to other projects that maintain manually
written documentation.

10 CONCLUSION

This paper describes FreshDoc, a novel method for the
detection and updating of outdated API names in docu-
mentation. FreshDoc extracts change rules from software
revision histories, finds the outdated API names in docu-
mentation and updates them with the change rules. We
evaluated FreshDoc with the API documentation of four
open source projects. Our evaluation results show that
FreshDoc automatically identified outdated API names in
documentation with 79 precision and 49 percent recall and
can correctly update 31 percent of the outdated API names
with new API names. In addition, in an evaluation with
ground truths, which were found in the documentation
revisions, FreshDoc could identify 82 percent of the manual
updates and update 35 percent of them with correct new
names. In addition, the outdated API names found by
FreshDoc were reported as issues, 75 percent of which were
subsequently accepted and fixed by developers. The Fresh-
Doc tool and our evaluation results are available at https://
figshare.com/articles/FreshDoc Package_zip/7012220 [58]
and the FreshDoc code can be found at https://bitbucket.
org/docupdater/freshdoc.

In the future, we will improve FreshDoc as follows. First,
to increase the accuracy of API detection, we will develop a
more systematic mechanism that goes beyond heuristic
rules. For example, when extracting code snippets as dis-
cussed in Section 4.4.1, we developed a metric based on sev-
eral heuristic rules. However, if code snippets are classified
as text descriptions, there could be a risk that the structural
information might be ignored, and the outdated API names
in the code snippets might not be detected. We can apply a
classification technique to reduce the risk. Second, to
improve the precision of API updates, we will expand our
set of change rules. For example, as discussed in Section 6.2,
61 of 95 outdated API names were regarded as simply
deleted API names and were not updated with new names.
We suspect that our set of change rules is not sufficiently

672 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 4, APRIL 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

https://figshare.com/articles/FreshDoc Package_zip/7012220
https://figshare.com/articles/FreshDoc Package_zip/7012220
https://bitbucket.org/docupdater/freshdoc
https://bitbucket.org/docupdater/freshdoc

comprehensive to update all outdated API names, and we
hope to develop a more thorough list of change rules. It
would be possible to study more complex change patterns
based on developers’ behaviors. In addition, one-to-many
and many-to-many change rules should be addressed.
Based on these change rules, more appropriate lists of
updates and recommendations could be revealed. Third,
because we focused on API name updates in this paper,
we plan to expand FreshDoc to update parameter values.
Research on parameter recommendations has already
begun but is currently limited to recommending parameters
in code [79], [80]. We are studying an automatic technique
for updating the parameter values of API calls according to
their parameter changes. Fourth, we would also like to
apply the updates to the application code. In that case, the
updated code should not have any compile or runtime
errors, which is a challenge. Finally, we plan to integrate
our tool with SCM tools for continuous API updates.

ACKNOWLEDGMENTS

This work was supported in part by a grant from National
Research Foundation of Korea (NRF-2015R1C1A2A0-1055111,
NRF-2018R1D1A1A02085551), and a grant fromNext-Genera-
tion Information Computing Development Program through
the National Research Foundation of Korea (NRF) funded by
the Ministry of Science, ICT (NRF-2017M3C4A7066210). This
work was also supported by Hong Kong RGC/GRF
(16202917) andMSRACollaborative ResearchAward.

REFERENCES

[1] T. McDonnell, B. Ray, and M. Kim, “An empirical study of api sta-
bility and adoption in the android ecosystem,” in Proc. 29th IEEE
Int. Conf. Softw. Maintenance, 2013, pp. 70–79.

[2] H. Zhong and Z. Su, “Detecting API documentation errors,” ACM
SIGPLAN Notices, vol. 48, no. 10, pp. 803–816, 2013.

[3] M. Linares-V�asquez, G. Bavota, M. Di Penta, R. Oliveto, and
D. Poshyvanyk, “How do api changes trigger stack overflow dis-
cussions? a study on the android sdk,” in Proc. 22nd Int. Conf. Pro-
gram Comprehension, 2014, pp. 83–94.

[4] Elasticsearch, “The book, the documentation and related 1929
community contributions,” GitHub, [Online]. Available: https://
github.com/elastic/elasticsearch/issues/3789, 2013.

[5] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Per-
spective. Reading, MA, USA: Addison-Wesley, 2015.

[6] F. Buschmann, “Industrial-grade DevOps - Balancing agility and
speed with extreme quality,” in Proc. 40th Int. Conf. Softw. Eng.,
2018, Art. no. 12.

[7] Elasticsearch, Java api documentation of Elasticsearch project,
GitHub, [Online]. Available: https://github.com/elastic/elasti
csearch/tree/master/docs/java-api, Accessed Mar. 10, 2019.

[8] Spring-boot, Documentation of Spring-boot project, GitHub
[Online]. Available: https://github.com/spring-projects/spring-
boot/tree/master/spring-boot-project/spring-boot-docs/src/
main/asciidoc, Accessed Mar. 10, 2019.

[9] Hibernate-orm, Manual of Hibernate-orm project, GitHub
[Online]. Available: https://github.com/hibernate/hibernate-
orm/tree/master/documentation/src/main/asciidoc, Accessed
Mar. 10, 2019.

[10] Logback, Site of Logback project, GitHub [Online]. Available:
https://github.com/qos-ch/logback/tree/master/logback-site,
Accessed Mar. 10, 2019.

[11] W. Maalej and M. P. Robillard, “Patterns of knowledge in API ref-
erence documentation,” IEEE Trans. Softw. Eng., vol. 39, no. 9,
pp. 1264–1282, Sep. 2013.

[12] B. Dagenais and M. P. Robillard, “Using traceability links to
recommend adaptive changes for documentation evolution,”
IEEE Trans. Softw. Eng., vol. 40, no. 11, pp. 1126–1146,
Nov. 2014.

[13] B. Thomas and S. Tilley, “Documentation for software engineers:
what is needed to aid system understanding?,” in Proc. 19th Annu.
Int. Conf. Comput. Documentation, 2001, pp. 235–236.

[14] S. R. Tilley, H. A. M€uller, and M. A. Orgun, “Documenting soft-
ware systems with views,” in Proc. 10th Annu. Int. Conf. Syst. Doc-
umentation, 1992, pp. 211–219.

[15] C. Cook and M. Visconti, “Documentation is important,” Cross-
Talk, vol. 7, no. 11, 26–30, 1994.

[16] Visconti, Marcello, and Curtis R. Cook, “An overview of indus-
trial software documentation practice,” in Proc. 22nd Int. Conf.
Chilean Comput. Sci. Soc., 2002, pp. 179–186.

[17] D. L. Parnas, “Software aging,” in Proc. 16th Int. Conf. Softw. Eng.,
1994, pp. 279–287.

[18] S. R. Tilley, “Documenting-in-the-large vs. documenting-in-the-
small,” in Proc. Conf. Centre Adv. Stud. Collaborative Res.: Distrib.
Comput., 1993, pp. 1083–1090.

[19] A. Forward and T. C. Lethbridge, “The relevance of software doc-
umentation, tools and technologies: a survey,” in Proc. ACM
Symp. Document Eng., 2002, pp. 26–33.

[20] G. Uddin and M. P. Robillard, “How API documentation fails,”
IEEE Softw., vol. 32, no. 4, pp. 68–75, Jul./Aug. 2015.

[21] M. Kajko-Mattsson, “A survey of documentation practice within
corrective maintenance,” Empirical Softw. Eng., vol. 10, no. 1,
pp. 31–55, 2005.

[22] I. Steinmacher, C. Treude, andM. Gerosa, “Let me in: Guidelines for
the successful onboarding of newcomers to open source projects,”
IEEE Softw., (Preprint). 2018, doi: 10.1109/MS.2018.110162131.

[23] B. Dagenais and M. P. Robillard, “Creating and evolving devel-
oper documentation: understanding the decisions of open source
contributors,” in Proc. 18th ACM SIGSOFT Int. Symp. Found. Softw.
Eng., 2010, pp. 127–136.

[24] Logback, “CyclicBufferTrackerImpl gone but docs and configura-
tion still refer to,” Atlassian [Online]. Available: https://jira.qos.
ch/browse/LOGBACK-933, Accessed Mar. 10, 2019.

[25] Hibernate-orm, “Impossible to switch session to EntityMode.
MAP,” GitHub [Online]. Available: https://hibernate.atlassian.
net/browse/HHH-7901, Accessed Mar. 10, 2019.

[26] Elasticsearch, “[DOCS] should use setPostFilter instead of
setFilter,”GitHub [Online]. Available: https://github.com/
elastic/elasticsearch/pull/5109, Accessed Mar. 10, 2019.

[27] Spring-boot, “Document deprecation of ‘spring.view.suffix’,”
GitHub [Online]. Available: https://github.com/spring-projects/
spring-boot/issues/3458, Accessed Mar. 10, 2019.

[28] Spring-boot, “Boot documentationmistake,” GitHub [Online]. Avail-
able: https://github.com/spring-projects/spring-boot/issues/2871,
AccessedMar. 10, 2019.

[29] Renukeswar Chinta, “java.lang.ClassNotFoundException: org.hiber-
nate. cache.EhCacheProvider,” StackOverflow [Online]. Available:
https://stackoverflow.com/questions/9643379/java-lang-classnot
foundexception-org-hibernate-cache-ehcacheprovider, Accessed
Mar. 10, 2019.

[30] Thepoynt “Hibernate 4 ConnectionProvider Class not found,”
StackOverflow [Online]. Available: https://stackoverflow.com/
questions/23018179/hibernate-4-connectionprovider-class-not-
found, Accessed Mar. 10, 2019.

[31] T. C. Lethbridge, J. Singer, and A. Forward, “How software engi-
neers use documentation: The state of the practice,” IEEE Softw.,
vol. 20, no. 6, 35–39, Nov./Dec. 2003.

[32] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of
the documentation essential to software maintenance,” in Proc.
23rd Annu. Int. Conf. Des. Commun.: Documenting Des. Pervasive
Inf., 2005, pp. 68–75.

[33] F. Zlotnick, The Open Source Survey, GitHub [Online]. Available:
https://opensourcesurvey.org/2017. Accessed Mar. 10, 2019.

[34] M. Wen, Y. Liu, R. Wu, X. Xie, S.C. Cheung, and Z. Su, “Exposing
library API misuses via mutation analysis,” in Proc. Int. Conf.
Softw. Eng., 2019. (Accepted).

[35] Elasticsearch, “Refactoring accessors using only getters and
setters,” GitHub [Online]. Available: https://github.com/elastic/
elasticsearch/issues/2657, Accessed Mar. 10, 2019.

[36] Elasticsearch, “Changed documentation to use getter notation,”
GitHub [Online]. Available: https://github.com/elastic/
elasticsearch/commit/f0cf97c0ac31c309bcc39f54eb90d62c01a7b21b,
AccessedMar. 10, 2019.

[37] Elasticsearch, “refactoring getter/setters for package index.get
#2657”, GitHub [Online]. Available: https://github.com/elastic/
elasticsearch/commit/9d8f503f1da45059bb5cdc31df4eece485869710,
AccessedMar. 10, 2019.

LEE ET AL.: AUTOMATIC DETECTION AND UPDATE SUGGESTION FOR OUTDATED API NAMES IN DOCUMENTATION 673

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

https://github.com/elastic/elasticsearch/issues/3789
https://github.com/elastic/elasticsearch/issues/3789
https://github.com/elastic/elasticsearch/tree/master/docs/java-api
https://github.com/elastic/elasticsearch/tree/master/docs/java-api
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-docs/src/main/asciidoc
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-docs/src/main/asciidoc
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-docs/src/main/asciidoc
https://github.com/hibernate/hibernate-orm/tree/master/documentation/src/main/asciidoc
https://github.com/hibernate/hibernate-orm/tree/master/documentation/src/main/asciidoc
https://github.com/qos-ch/logback/tree/master/logback-site
http://dx.doi.org/10.1109/MS.2018.110162131
https://jira.qos.ch/browse/LOGBACK-933
https://jira.qos.ch/browse/LOGBACK-933
https://hibernate.atlassian.net/browse/HHH-7901
https://hibernate.atlassian.net/browse/HHH-7901
https://github.com/elastic/elasticsearch/pull/5109
https://github.com/elastic/elasticsearch/pull/5109
https://github.com/spring-projects/spring-boot/issues/3458
https://github.com/spring-projects/spring-boot/issues/3458
https://github.com/spring-projects/spring-boot/issues/2871
https://stackoverflow.com/questions/9643379/java-lang-classnotfoundexception-org-hibernate-cache-ehcacheprovider
https://stackoverflow.com/questions/9643379/java-lang-classnotfoundexception-org-hibernate-cache-ehcacheprovider
https://stackoverflow.com/questions/23018179/hibernate-4-connectionprovider-class-not-found
https://stackoverflow.com/questions/23018179/hibernate-4-connectionprovider-class-not-found
https://stackoverflow.com/questions/23018179/hibernate-4-connectionprovider-class-not-found
https://opensourcesurvey.org/2017
https://github.com/elastic/elasticsearch/issues/2657
https://github.com/elastic/elasticsearch/issues/2657
https://github.com/elastic/elasticsearch/commit/f0cf97c0ac31c309bcc39f54eb90d62c01a7b21b
https://github.com/elastic/elasticsearch/commit/f0cf97c0ac31c309bcc39f54eb90d62c01a7b21b
https://github.com/elastic/elasticsearch/commit/9d8f503f1da45059bb5cdc31df4eece485869710
https://github.com/elastic/elasticsearch/commit/9d8f503f1da45059bb5cdc31df4eece485869710

[38] Elasticsearch, Elasticsearch: A Distributed RESTful Search Engine
project, GitHub [Online]. Available: https://github.com/elastic/
elasticsearch, Accessed Mar. 10, 2019.

[39] Hibernate-orm, Hibernate-orm project, GitHub [Online]. Avail-
able: https://github.com/hibernate/hibernate-orm, Accessed
Mar. 10, 2019.

[40] Hibernate-orm, Hibernate-orm project, GitHub [Online]. Avail-
able: https://github.com/hibernate/hibernate-orm, Accessed
Mar. 10, 2019.

[41] Logback, Logback project, GitHub [Online]. Available: https://
github.com/qos-ch/logback, Accessed Mar. 10, 2019.

[42] B. Dagenais and M. P. Robillard, “Recovering traceability links
between an API and its learning resources,” in Proc. 34th Int. Conf.
Softw. Eng., 2012, pp. 47–57.

[43] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API doc-
umentation,” in Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 643–652.

[44] E. Murphy-Hill, C. Parnin, and P. B. Andrew, “How we refactor,
and how we know it,” IEEE Trans. Softw. Eng., vol. 38, no. 1,
pp. 5–18, Jan./Feb. 2012.

[45] Apache OpenNLP, The Apache Software Foundation [Online].
Available: https://opennlp.apache.org/, Accessed Mar. 10, 2019.

[46] Language Tool, LGPL [Online]. Available: https://languagetool.
org/, Accessed Mar. 10, 2019.

[47] Eclipse Spell Checker, GitHub [Online]. Available: https://
github.com/eclipse/eclipse.jdt.ui/blob/master/org.eclipse.jdt.
ui/ui/org/eclipse/jdt/internal/ui/text/spelling/engine/
ISpellCheckEngine.java, Accessed Mar. 10, 2019.

[48] B. Dagenais and M. P. Robillard, “Recommending adaptive
changes for framework evolution,” ACM Trans. Softw. Eng.
Methodology, vol. 20, no. 4, 2011, Art. no. 19.

[49] S. Meng, X. Wang, L. Zhang, and H. Mei, “A history-based match-
ing approach to identification of framework evolution,” in Proc.
34th Int. Conf. Softw. Eng., 2012, pp. 353–363.

[50] W. Wu, Y. Gu�eh�eneuc, G. Antoniol, and M. Kim, “Aura: A hybrid
approach to identify framework evolution,” in Proc. 32nd ACM/
IEEE Int. Conf. Softw. Eng., 2010, pp. 325–334.

[51] B. Fluri and H. Gall, “Classifying change types for qualifying
change couplings,” in Proc. 14th IEEE Int. Conf. Program Compre-
hension, 2006, pp. 35–45.

[52] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,”
IEEE Trans. Softw. Eng., vol. 33, no. 11, pp. 725–743, 2007.

[53] JGit, Eclipse Foundation [Online]. Available: [Online]. Available:
https://eclipse.org/jgit/, Accessed Mar. 10, 2019.

[54] ChangeDistiller (Adapted), [Online]. Available: https://bitbucket.
org/docupdater/changedistiller/, Accessed Mar. 10, 2019.

[55] P. C. Rigby and M. P. Robillard, “Discovering essential code ele-
ments in informal documentation,” in Proc. Int. Conf. Softw. Eng.,
2013, pp. 832–841.

[56] T. Parr, ANTLR, ANTLR / Terence Parr [Online]. Available:
http://www.antlr.org/, Accessed Mar. 10, 2019.

[57] V. Terragni, Y. Liu, and S. C. Cheung, “CSNIPPEX: Automated
synthesis of compilable code snippets from Q&A sites,” in Proc.
25th Int. Symp. Softw. Testing Anal., 2016, pp. 118–129.

[58] Seonah Lee “FreshDoc, Tool and Experimental results,” FigShare
[Online]. Available: https://figshare.com/articles/FreshDoc_
Package_zip/7012220, Accessed Mar. 10, 2019.

[59] Elasticsearch, “Docs: Is the IndexResponse.matches()method out-
dated?” GitHub [Online]. Available: https://github.com/elastic/
elasticsearch/issues/7548, Accessed Mar. 10, 2019.

[60] Elasticsearch, “Docs: Are there outdated APIs (e.g., Date-Histogram)
in Java API docs?” GitHub [Online]. Available: https://github.com/
elastic/elasticsearch/issues/9976, Accessed Mar. 10, 2019.

[61] Elasticsearch, “Docs: Are there outdated APIs (e.g., Aggregator-
Builder) in Java API docs?” GitHub [Online]. Available: https://
github.com/elastic/elasticsearch/issues/28114, Accessed Mar.
10, 2019.

[62] Spring-boot, “Docs: Is ConfigurableEmbeddedServletCon-tainer-
Factory outdated?” GitHub [Online]. Available: https://github.
com/spring-projects/spring-boot/issues/1500, Accessed Mar. 10,
2019.

[63] Spring-boot, “Docs: Is AutoConfigurationReport out-dated?”
GitHub [Online]. Available: https://github.com/spring-projects/
spring-boot/issues/2493, Accessed Mar. 10, 2019.

[64] Spring-boot, “Docs: Are there outdated APIs in the docs?”
GitHub [Online]. Available: https://github.com/spring-projects/
spring-boot/issues/2598, Accessed Mar. 10, 2019

[65] Spring-boot, “Docs: Are there outdated APIs (e.g., Servlet-Web-
ServerFactoryCustomizer) in the docs?” GitHub [Online]. Avail-
able: https://github.com/spring-projects/spring-boot/issues/
11529, Accessed Mar. 10, 2019.

[66] Hibernate-orm, “Docs: Is jack-event-reg-example outdated?”,
Atlassian [Online]. Available: https://hibernate.atlassian.net/
browse/HHH-9616, Accessed Mar. 10, 2019.

[67] Hibernate-orm, Docs: Are there outdated APIs in the Man-ual
(EN-US)?, Atlassian [Online]. Available: https://hibernate.
atlassian.net/browse/HHH-9650, Accessed Mar. 10, 2019.

[68] Hibernate-orm, “Docs: Are there outdated APIs (e.g., Infinispan-
RegionFactory) in the User Guide?” Atlassian [Online]. Available:
https://hibernate.atlassian.net/browse/HHH-12200, Accessed
Mar. 10, 2019.

[69] Logback, “Docs: Are there outdated APIs (e.g., SocketRemote) in
the site?” Atlassian [Online]. Available: https://jira.qos.ch/
browse/LOGBACK-1053, Accessed Mar. 10, 2019.

[70] Logback, “Docs: Are there outdated APIs (e.g., WriterAp- 2112
pender) in the site?”, Atlassian [Online]. Available: https://jira.
qos.ch/browse/LOGBACK-1367, Accessed Mar. 10, 2019.

[71] Salee, Is ImmutableSettings removed in Elasticsearch? StackOver-
flow [Online]. Available: https://stackoverflow.com/questions/
33115504/is-immutablesettings-removed-in-Elasticsearch, Accessed
Mar. 10, 2019.

[72] R. P. Buse and W. R. Weimer, “Automatically documenting pro-
gram changes,” in Proc. IEEE/ACM Int. Conf. Autom. Soft. Eng.,
2010, pp. 33–42.

[73] P. W. McBurney and C. McMillan, “Automatic documentation
generation via source code summarization of method context,” in
Proc. 22nd Int. Conf. Program Comprehension, 2014, pp. 279–290.

[74] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and
G. Canfora, “Automatic generation of release notes,” in Proc. 22nd
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2014, pp. 484–495.

[75] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
K. Vijay-Shanker, “Towards automatically generating summary
comments for java methods,” in Proc. IEEE/ACM Int. Conf. Autom.
Softw. Eng., 2010, pp. 43–52.

[76] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall,
“Analyzing APIs documentation and code to detect directive
defects,” in Proc. 39th Int. Conf. Softw. Eng., pp. 27–37, 2017.

[77] N. Meng, M. Kim, and K. S. McKinley, “LASE: Locating and
applying systematic edits by learning from examples,” in Proc.
Int. Conf. Softw. Eng., 2013, pp. 502–511.

[78] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus,
“How can I use this method?,” in Proc. IEEE/ACM 37th IEEE Int.
Conf. Softw. Eng., vol. 1, pp. 880–890, 2015.

[79] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J. Zhao, and P. Ou,
“Automatic parameter recommendation for practical API usage,”
in Proc. 34th Int. Conf. Softw. Eng., 2012, pp. 826–836.

[80] M. Asaduzzaman, C. K. Roy, S. Monir, and K. A. Schneider,
“Exploring API method parameter recommendations,” in Proc.
IEEE Int. Conf. Softw. Maintenance Evol., 2015, pp. 271–280.

Seonah Lee received the BS and MS degrees in
computer science and engineering from Ewha
Womans University, in 1997 and 1999, respec-
tively, she received the MSE degree from the
School of Computer Science, Carnegie Mellon
University, in 2005, and the PhD degree from the
School of Computer Science, KAIST, in 2013.
She worked as a software engineer with Sam-
sung Electronics from 1999 to 2006. She served
as a research professor at KAIST. Currently, she
is an assistant professor of aerospace and soft-

ware engineering at Gyeongsang National University. Her research
interests include software evolution, documentation updates, require-
ment traceability, software architecture, and data mining. She is a mem-
ber of the IEEE.

674 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 4, APRIL 2021

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/hibernate/hibernate-orm
https://github.com/hibernate/hibernate-orm
https://github.com/qos-ch/logback
https://github.com/qos-ch/logback
https://opennlp.apache.org/
https://languagetool.org/
https://languagetool.org/
https://github.com/eclipse/eclipse.jdt.ui/blob/master/org.eclipse.jdt.ui/ui/org/eclipse/jdt/internal/ui/text/spelling/engine/ISpellCheckEngine.java
https://github.com/eclipse/eclipse.jdt.ui/blob/master/org.eclipse.jdt.ui/ui/org/eclipse/jdt/internal/ui/text/spelling/engine/ISpellCheckEngine.java
https://github.com/eclipse/eclipse.jdt.ui/blob/master/org.eclipse.jdt.ui/ui/org/eclipse/jdt/internal/ui/text/spelling/engine/ISpellCheckEngine.java
https://github.com/eclipse/eclipse.jdt.ui/blob/master/org.eclipse.jdt.ui/ui/org/eclipse/jdt/internal/ui/text/spelling/engine/ISpellCheckEngine.java
https://eclipse.org/jgit/
https://bitbucket.org/docupdater/changedistiller/
https://bitbucket.org/docupdater/changedistiller/
http://www.antlr.org/
https://figshare.com/articles/FreshDoc_Package_zip/7012220
https://figshare.com/articles/FreshDoc_Package_zip/7012220
https://github.com/elastic/elasticsearch/issues/7548
https://github.com/elastic/elasticsearch/issues/7548
https://github.com/elastic/elasticsearch/issues/9976
https://github.com/elastic/elasticsearch/issues/9976
https://github.com/elastic/elasticsearch/issues/28114
https://github.com/elastic/elasticsearch/issues/28114
https://github.com/spring-projects/spring-boot/issues/1500
https://github.com/spring-projects/spring-boot/issues/1500
https://github.com/spring-projects/spring-boot/issues/2493
https://github.com/spring-projects/spring-boot/issues/2493
https://github.com/spring-projects/spring-boot/issues/2598
https://github.com/spring-projects/spring-boot/issues/2598
https://github.com/spring-projects/spring-boot/issues/11529
https://github.com/spring-projects/spring-boot/issues/11529
https://hibernate.atlassian.net/browse/HHH-9616
https://hibernate.atlassian.net/browse/HHH-9616
https://hibernate.atlassian.net/browse/HHH-9650
https://hibernate.atlassian.net/browse/HHH-9650
https://hibernate.atlassian.net/browse/HHH-12200
https://jira.qos.ch/browse/LOGBACK-1053
https://jira.qos.ch/browse/LOGBACK-1053
https://jira.qos.ch/browse/LOGBACK-1367
https://jira.qos.ch/browse/LOGBACK-1367
https://stackoverflow.com/questions/33115504/is-immutablesettings-removed-in-Elasticsearch
https://stackoverflow.com/questions/33115504/is-immutablesettings-removed-in-Elasticsearch

Rongxin Wu received the PhD degree from
HKUST, in 2017. He is a post-doctoral research
fellow in the department of computer science
and engineering at the Hong Kong University of
Science and Technology (HKUST). His research
interests include program analysis, software
security, and mining software repository. His
research work has been regularly published in
top conferences and journals in the research
communities of program languages and software
engineering, including POPL, PLDI, ICSE, FSE,

ISSTA, Association for Science Education, IEEE Transactions on Soft-
ware Engineering and Empirical Software Engineering and so on. He
has served as a reviewer in reputable international journals and a pro-
gram committee member in several international conferences. He has
ever received ACM SIGSOFT Distinguished Paper award. More infor-
mation about him can be found at: http://home.cse.ust.hk/�wurongxin/.
He is a member of the IEEE.

Shing-Chi Cheung received the doctoral degree
in computing from the Imperial College London.
He joined the Hong Kong University of Science
and Technology (HKUST) where he was a pro-
fessor of Computer Science and Engineering, in
1994. He founded the CASTLE research group at
HKUST and co-founded, in 2006 the International
Workshop on Automation of Software Testing
(AST). He was the general chair of the 22nd
ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE

2014). He was an editorial board member of the IEEE Transactions on
Software Engineering (TSE, 2006-9). His research interests focus on
the quality enhancement of software for mobile, web, deep learning,
open-source and end-user applications. He is an ACM distinguished sci-
entist. More information about his CASTLE research group can be found
at http://sccpu2.cse.ust.hk/castle/people.html. He is a senior member of
the IEEE.

Sungwon Kang received BA degree from Seoul
National University, in 1982 and the MS and PhD
degree in computer science from the University
of Iowa, in 1989 and 1992, respectively. From
1993, he was a principal researcher of Korea
Telecom R & D Group until October 2001 when
he joined the School of Computing at Korea
Advanced Institute of Science and Technology.
During 2003-2014, he was an adjunct faculty of
Carnegie-Mellon University for the Master of Soft-
ware Engineering Program. He served as chairs

and program chairs of numerous international conferences, the editor of
the Korean Journal of Software Engineering Society, and as the presi-
dent of the Korean Software Engineering Society. His research areas
include software architecture, software product line, software testing
and data-based software engineering.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LEE ET AL.: AUTOMATIC DETECTION AND UPDATE SUGGESTION FOR OUTDATED API NAMES IN DOCUMENTATION 675

Authorized licensed use limited to: Xiamen University. Downloaded on August 22,2023 at 02:15:01 UTC from IEEE Xplore. Restrictions apply.

http://home.cse.ust.hk/∼wurongxin/
http://home.cse.ust.hk/∼wurongxin/
http://sccpu2.cse.ust.hk/castle/people.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

