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ABSTRACT
Memory-related vulnerabilities constitute severe threats to the secu-
rity of modern software. Despite the success of deep learning-based
approaches to generic vulnerability detection, they are still limited
by the underutilization of flow information when applied for detect-
ing memory-related vulnerabilities, leading to high false positives.

In this paper, we propose MVD, a statement-level Memory-related
Vulnerability Detection approach based on flow-sensitive graph
neural networks (FS-GNN). FS-GNN is employed to jointly em-
bed both unstructured information (i.e., source code) and struc-
tured information (i.e., control- and data-flow) to capture implicit
memory-related vulnerability patterns. We evaluate MVD on the
dataset which contains 4,353 real-world memory-related vulnera-
bilities, and compare our approach with three state-of-the-art deep
learning-based approaches as well as five popular static analysis-
based memory detectors. The experiment results show that MVD
achieves better detection accuracy, outperforming both state-of-the-
art DL-based and static analysis-based approaches. Furthermore,
MVD makes a great trade-off between accuracy and efficiency.
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1 INTRODUCTION
As one of the most representative vulnerabilities, memory-related
vulnerabilities can result in performance degradation and program
crash, severely threatening the security of modern software [19, 66].
According to the data released by CVE (Common Vulnerabilities
and Exposures [2]), nearly a third of the vulnerabilities (32.6%) in
Linux Kernel [10] are related to improper memory operations [33].

Many static analysis approaches [21, 24, 31, 34, 38, 40, 52, 56, 58,
60, 61] have been proposed to detect memory-related vulnerabilities
and shown their effectiveness. They use some pre-defined vulnera-
bility rules or patterns to search for improper memory operations
[41, 42]. However, well-defined vulnerability rules or patterns are
highly dependent on expert knowledge, and thus it is difficult to
cover all the cases. What’s worse, the sophisticated programming
logic in real-world software projects gets in the way of the manual
identification of the rules, and thus greatly compromises the per-
formance of the traditional static analysis-based approaches [51].
Recently, benefiting from the powerful performance of deep learn-
ing (DL), a number of approaches [16, 17, 20, 23, 44–46, 64, 70–72]
have been proposed to leverage DL models to capture program
semantics to identify potential software vulnerabilities. Compared
with traditional static analysis-based approaches, they can automat-
ically extract implicit vulnerability patterns from prior vulnerable
code instead of requiring expert involvement. However, the existing
DL-based approaches suffer from two limitations when applied to
memory-related vulnerability detection, as described below.

Flow Information Underutilization: Due to the underutiliza-
tion of flow information, existing DL-based approaches failed to
detect complicated memory-related vulnerabilities in real-world
projects [20] for the following two aspects: (1) lack of interprocedu-
ral analysis, and (2) partial flow information loss in model training.
For the former one, most of DL-based approaches [17, 23, 44, 64, 71]
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take the function-level vulnerable code as input to conduct intrapro-
cedural analysis for feature extraction, ignoring call relations be-
tween functions. However, in real-world programs, operations like
calling a user-defined function which realizes memory allocation
or free are widespread. Missing interprocedural analysis may cause
incomplete semantic modeling, resulting in lower Recall and Pre-
cision. For the latter one, limited by the capability of popular DL
models (e.g., BiLSTM [30, 45, 46, 62], GGNN [64, 71], and GCN
[20]) in handling multiple relations, partial flow information is lost
during the process of model training. For example, Devign [71]
uses GGNN [43] as the basic model to propagate and aggregate
information across multi-relational graphs. Since GGNN treats the
relational graph as multiple directed graphs without attributes (i.e.,
feature information is only passed between nodes connected by
edges of the same type), its effectiveness is often compromised by
the tremendous increase in the number of data-flow edges with
different attributes. Thus, Devign has to substitute them with three
other token-level relations (i.e., LastRead, LastWrite, and Comput-
edFrom [1]) to make it more adaptive for the graph embedding,
sacrificing partial precise data-flow information well preserved in
graphs. A simple instance is that receiving a normal pointer variable
(non-vulnerable) is obviously not the same as receiving a pointer
variable which points to the memory just released (vulnerable).

Coarse Granularity: The detection granularity of the existing
DL-based approaches is mostly at the function-level [17, 23, 44, 64,
71] or slice-level [20, 45, 46, 72]. However, developers still need to
spend a deal of time in manually narrowing down the range of
suspicious statements (or operations). Achieving fine-grained de-
tection results is non-trivial. Due to the huge differences between
various vulnerabilities, existing DL-based approaches for generic
vulnerability detection have to sacrifice unique semantic features
specific to certain vulnerabilities to ensure that the trained model
can cover the general characteristics of the majority of vulnera-
bilities. In comparison with other vulnerabilities, memory-related
vulnerabilities are usually fixed with one or several lines of code,
which makes fine-grained detection possible. For example, memory
leak can be located to the statement which allocates memory, while
use-after-free can be located to the statement which frees memory.

In this paper, we propose a novel approach (MVD) based on flow-
sensitive graph neural networks to alleviate the above limitations.

Fully Utilizing Flow Information: To capture more compre-
hensive and precise program semantics, MVD combines Program
Dependence Graph (PDG) with Call Graph (CG) [53] to capture
interprocedural control- and data-flow information. First, we con-
duct interprocedural analysis by extending PDG with additional
semantic information (including call relations and return values
between functions) using CG. In our approach, code snippets and
relations (i.e., edges) are embedded in compact low-dimensional
representations to preserve both the unstructured (i.e., source code)
and structured (i.e., control- and data-flow) information. Further-
more, in order to make the detection model learn effective memory-
related vulnerability patterns from comprehensive and precise flow
information, MVD constructs a novel Flow-Sensitive Graph Neural
Networks (FS-GNN) to jointly embed statements and flow informa-
tion to capture program semantics from vulnerable code.

Fine Granularity: We formalize the detection of vulnerable
statements as a node classification problem, i.e., identifying which

statement(s) in the program is vulnerable. Specifically, MVD re-
ceives the graph representation of a program (in which graph nodes
represent statements and edges indicate their relations) and outputs
node labels (i.e., vulnerable or not).

Since there is currently no dataset that can be directly used for
training a statement-level memory-related vulnerability detection
model, we construct a dataset which contains 4,353 real-world
memory-related vulnerabilities. The dataset as well as the empirical
data are available online1.

In summary, this paper makes the following contributions:
• We propose a novel Flow-Sensitive Graph Neural Networks

(FS-GNN) to support effective detection of memory-related
vulnerabilities.

• We formalize vulnerability detection as a fine-grained node
classification problem to identify suspicious vulnerable state-
ments.

• We evaluate MVD on our constructed dataset, and the results
show that MVD can effectively detect memory-related vulnera-
bilities over state-of-the-art vulnerability detection approaches
(including three DL-based and five static analysis-based ap-
proaches).

2 BASICS AND MOTIVATION
2.1 Definitions
Program Dependence Graph. Given a program, all the program
statements and dependencies among statements constitute a Pro-
gram Dependence Graph (PDG) [26]. PDG includes two types of
edges: data dependency edges which reflect the influence of one
variable on another and control dependency edges which reflect
the influence of predicates on the values of variables.

Call Graph. Given a program, its Call Graph (CG) [53] indicates
a series of function calls from call sites (caller) to the callee.

Graph Neural Networks. Due to the outstanding ability in
processing graph data structures, Graph Neural Networks (GNNs)
have been used in a variety of data-driven software engineering
(SE) tasks (e.g., code representation [1], clone detection [65], and
bug localization [48]) and have achieved great breakthroughs. The
goal of GNNs is to train a parametric function via message passing
between the nodes of graphs for downstream tasks, i.e., graph
classification, node classification, and link prediction.

2.2 Motivating Examples
Figure 1 shows a typical use-after-free vulnerability CVE-2019-15920
[5] in Linux Kernel. The vulnerable function SMB2_read has been
simplified for a clear illustration. We can observe that the memory
space pointed by the pointer req is released in advance by the
memory release statement cifs_small_buf_release(req)
at line 5, while it is still used at lines 8-13. This operation may
allow attackers to write malicious data. To fix this vulnerability, the
pointer req should be released after it is used for the last time (e.g.,
line 14). Despite the support of precise data dependence analysis,
this vulnerability cannot be easily detected by some static analysis-
based approaches because they may not know mempool_free()
at line 24 is a user-defined memory deallocation function.

1https://github.com/MVDetection/MVD

https://github.com/MVDetection/MVD


MVD: Memory-Related Vulnerability Detection Based on Flow-Sensitive Graph Neural Networks ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USAMVD: Memory-Related Vulnerability Detection Based on Flow-Sensitive Graph Neural Networks ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

1 int SMB2_read(const unsigned int xid, struct cifs_io_parms

*io_parms, unsigned int *nbytes, char **buf, int *buf_type)↩→
2 {
3 struct smb2_read_plain_req *req = NULL;
4 ...
5 - cifs_small_buf_release(req);
6 if (rc) {
7 if (rc != -ENODATA) {
8 trace_smb3_read_err(xid,req->PersistentFileId,

io_parms->tcon->tid, ses->Suid, io_parms->offset,
io_parms->length, rc);

↩→
↩→

9 } else
10 trace_smb3_read_done(xid,req->PersistentFileId,

io_parms->tcon->tid, ses->Suid, io_parms->offset,
0);

↩→
↩→

11 return rc == -ENODATA ? 0 : rc;
12 } else
13 trace_smb3_read_done(xid,req->PersistentFileId,

io_parms->tcon->tid, ses->Suid, io_parms->offset,
io_parms->length);

↩→
↩→

14 + cifs_small_buf_release(req);
15 ...
16 return rc;
17 }
18 void cifs_small_buf_release(void *buf_to_free)
19 {
20 if (buf_to_free == NULL) {
21 cifs_dbg(FYI, "Null buffer passed to

cifs_small_buf_release\n");↩→
22 return;
23 }
24 mempool_free(buf_to_free, cifs_sm_req_poolp);
25 atomic_dec(&smBufAllocCount);
26 return;
27 }

Figure 1: A Use-After-Free Vulnerability (CVE-2019-15920) in
Linux Kernel

this vulnerability cannot be easily detected by some static analysis-
based approaches because they may not know mempool_free()
at line 24 is a user-defined memory deallocation function.

From this example, we can draw the following observations:
Observation 1. Comprehensive and precise interprocedu-

ral flow analysis is necessary. As shown in Figure 1, we can find
that the program semantics of vulnerable code and non-vulnerable
code are different. In the vulnerable code, vulnerable statement at
line 5 releases req when req is still being used after that, while
in the non-vulnerable code, req is released by the patched state-
ment at line 14 only when req is no longer used. However, due
to the lack of interprocedural analysis, critical program semantics
(i.e., memory deallocation via mempool_free, which is involved
in the function call to cifs_small_buf_release(req) at
line 5) are ignored by a number of deep learning-based approaches
[17, 44, 64, 71], resulting in incomplete program semantic modeling
towards vulnerable statement at line 5.

In our approach, we extend basic Program Dependence Graph
(PDG) with additional semantic information like call relations and
return values obtained from Call Graph (CG) [53] to capture com-
prehensive and precise interprocedural program semantics. With
such rich information, features of memory-related vulnerabilities
can be extracted for more effective detection.

Observation 2. Sensitive contextual information within
flows helps to refine detection granularity. As shown in the
motivating example, the premise of identifying the statement at
line 5 as vulnerable is that we should know in advance that req
released by this statement will be used later. Thus, to distinguish
vulnerable statements from others, the neural networks used as

detection models should be able to capture sensitive contextual
information within flows of vulnerable statements for inference.
However, due to the limitations of popular DL models[45, 46, 64, 71]
in handling multiple relations, rich contextual information are
lost during the process of model training. For example, FUNDED
[64] only considers one-directional transmission of multiple rela-
tions such as control- and data-flows, and adopts GGNN [43] to
learn vulnerability patterns for detection. While it is successful
in function-level vulnerability detection, it loses some important
contextual information from output flows, e.g., the data-flow in-
formation within Edge 5->8 will not be used for feature update
of vulnerable statement at line 5. Thus, it is hard for FUNDED to
identify the statement line 5 as vulnerable because critical output
flow information (i.e., using req after freeing it) is not preserved
in cifs_small_buf_release(req).

Based on the above observations, we propose a novel model,
FS-GNN, for effectively detecting memory-related vulnerabilities.
FS-GNN is a novel flow-sensitive graph neural network to jointly
embed both statements and flow information for better information
propagation between statements. With FS-GNN, rich contextual
semantics of neighbors are aggregated through multiple relations
to update the embedding of the central node.

3 OUR APPROACH: MVD
Figure 2 shows the overview of MVD. It consists of two phases:
training phase and detection phase.

The training phase includes three steps. In step 1, MVD constructs
the Program Dependence Graph (PDG) based on the control- and
data-flow of the program. To capture comprehensive and precise
program semantics, MVD extends the PDG with additional seman-
tic information like call relations and return values obtained from
Call Graph (CG) [53] to conduct interprocedural analysis. Further-
more, to reduce irrelevant semantic noise, MVD conduct program
slicing [59, 67] from the program points of interest. In step 2, MVD
uses Doc2Vec [39] to transform the statements of each slice into
low-dimensional vector representations. In step 3, MVD uses Flow-
Sensitive Graph Neural Networks (FS-GNN) to jointly embed nodes
and relations to learn implicit vulnerability patterns and re-balance
node labels distribution. Finally, a well-trained model is produced
for memory-related vulnerability detection at the statement-level.

For the detection phase, with the interprocedural analysis, the
control- and data-dependence of a target program is first extracted
for program slicing to capture precise program semantics related
to memory usage. Then, for each slice, both its unstructured (i.e.,
statement embedding by Doc2Vec) and structured (i.e., control- and
data-flow) information are used as graph input to feed into the
well-trained detection model for vulnerability detection.

3.1 Feature Extraction
First, we use the static analysis tool, Joern [68], to parse source code
and construct the Program Dependence Graph (PDG). Then, we
extend the PDG with additional semantic information like call rela-
tions and return values obtained from Call Graph (CG) to conduct
interprocedural analysis, which preserves comprehensive control-
and data-flow information. However, since a function usually con-
tains dozens or even hundreds of code lines while the vulnerability

Figure 1: A Use-After-Free Vulnerability (CVE-2019-15920) in
Linux Kernel

From this example, we can draw the following observations:
Observation 1. Comprehensive and precise interprocedu-

ral flow analysis is necessary. As shown in Figure 1, we can find
that the program semantics of vulnerable code and non-vulnerable
code are different. In the vulnerable code, vulnerable statement at
line 5 releases req when req is still being used after that, while
in the non-vulnerable code, req is released by the patched state-
ment at line 14 only when req is no longer used. However, due
to the lack of interprocedural analysis, critical program semantics
(i.e., memory deallocation via mempool_free, which is involved
in the function call to cifs_small_buf_release(req) at
line 5) are ignored by a number of deep learning-based approaches
[17, 44, 64, 71], resulting in incomplete program semantic modeling
towards vulnerable statement at line 5.

In our approach, we extend basic Program Dependence Graph
(PDG) with additional semantic information like call relations and
return values obtained from Call Graph (CG) [53] to capture com-
prehensive and precise interprocedural program semantics. With
such rich information, features of memory-related vulnerabilities
can be extracted for more effective detection.

Observation 2. Sensitive contextual information within
flows helps to refine detection granularity. As shown in the
motivating example, the premise of identifying the statement at
line 5 as vulnerable is that we should know in advance that req
released by this statement will be used later. Thus, to distinguish
vulnerable statements from others, the neural networks used as
detection models should be able to capture sensitive contextual
information within flows of vulnerable statements for inference.
However, due to the limitations of popular DL models[45, 46, 64, 71]
in handling multiple relations, rich contextual information are

lost during the process of model training. For example, FUNDED
[64] only considers one-directional transmission of multiple rela-
tions such as control- and data-flows, and adopts GGNN [43] to
learn vulnerability patterns for detection. While it is successful
in function-level vulnerability detection, it loses some important
contextual information from output flows, e.g., the data-flow in-
formation within Edge 5->8 will not be used for feature update
of vulnerable statement at line 5. Thus, it is hard for FUNDED to
identify the statement line 5 as vulnerable because critical output
flow information (i.e., using req after freeing it) is not preserved
in cifs_small_buf_release(req).

Based on the above observations, we propose a novel model,
FS-GNN, for effectively detecting memory-related vulnerabilities.
FS-GNN is a novel flow-sensitive graph neural network to jointly
embed both statements and flow information for better information
propagation between statements. With FS-GNN, rich contextual
semantics of neighbors are aggregated through multiple relations
to update the embedding of the central node.

3 OUR APPROACH: MVD
Figure 2 shows the overview of MVD. It consists of two phases:
training phase and detection phase.

The training phase includes three steps. In step 1, MVD constructs
the Program Dependence Graph (PDG) based on the control- and
data-flow of the program. To capture comprehensive and precise
program semantics, MVD extends the PDG with additional seman-
tic information like call relations and return values obtained from
Call Graph (CG) [53] to conduct interprocedural analysis. Further-
more, to reduce irrelevant semantic noise, MVD conduct program
slicing [59, 67] from the program points of interest. In step 2, MVD
uses Doc2Vec [39] to transform the statements of each slice into
low-dimensional vector representations. In step 3, MVD uses Flow-
Sensitive Graph Neural Networks (FS-GNN) to jointly embed nodes
and relations to learn implicit vulnerability patterns and re-balance
node labels distribution. Finally, a well-trained model is produced
for memory-related vulnerability detection at the statement-level.

For the detection phase, with the interprocedural analysis, the
control- and data-dependence of a target program is first extracted
for program slicing to capture precise program semantics related
to memory usage. Then, for each slice, both its unstructured (i.e.,
statement embedding by Doc2Vec) and structured (i.e., control- and
data-flow) information are used as graph input to feed into the
well-trained detection model for vulnerability detection.

3.1 Feature Extraction
First, we use the static analysis tool, Joern [68], to parse source code
and construct the Program Dependence Graph (PDG). Then, we
extend the PDG with additional semantic information like call rela-
tions and return values obtained from Call Graph (CG) to conduct
interprocedural analysis, which preserves comprehensive control-
and data-flow information. However, since a function usually con-
tains dozens or even hundreds of code lines while the vulnerability
exists only in a few lines of code, simply taking the whole program
to train a detection model will reduce the performance of identify-
ing key features. Thus, MVD adopts program slicing [67] to perform
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1 void memory_leak ()
2 {
3 char *str = "This is a string";
4 char *str1;
5 memory_leak_func(strlen(str),&str1);
6 strcpy(str1,str);
7 }
8 void memory_leak_func (int len,char **stringPtr)
9 {

10 char * p = malloc(sizeof(char) * (len+1));
11 *stringPtr = p;
12 }

(a) Exemplary Code Sample
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Figure 3: Details of Feature Extraction

exists only in a few lines of code, simply taking the whole program
to train a detection model will reduce the performance of identify-
ing key features. Thus, MVD adopts program slicing [67] to perform
backward and forward slicing from the program point of interest
to avoid noise induced by irrelevant statements.

To ensure that the generated slices contain memory-related vul-
nerabilities, we mainly focus on two types of program points of
interest: 1) system API calls, and 2) pointer variable. As mentioned in
previous works [20, 45, 46, 72], the misuse of system API calls is one
of the major causes of vulnerabilities, including memory-related
vulnerabilities. For example, syscall_buf is a typical system API
call related to buffer operations in Linux Kernel. It often occurs in
Out-of-bounds Read/Write and other similar buffer-related vulner-
abilities. In total, we conclude 217 system API calls from several

static memory detectors [24, 56] as slicing criteria for extracting
vulnerable code snippets. For pointer variable, it has been widely
adopted by traditional static analysis-based approaches [24, 40, 60].
It should be noted that starting from the program point of interest,
we perform backward slicing according to both control- and data-
dependence, but forward slicing based on only data-dependence
because improper memory operations (e.g., allocating memory but
not freeing it) have been involved in the forward data-dependence,
and usually forward control-dependence will induce a great deal of
irrelevant statements.

Figure 3 provides an example to show the process of feature
extraction. As shown in Figure 3a, it is a memory leak vulnerabil-
ity. At line 5, it allocates memory through malloc() in function
memory_leak_func() without freeing even to the end of the
program. In our approach, the control- and data-flow information
of the vulnerable program is first extracted to construct the PDG
of the program, which is shown in Figure 3b. Then, based on in-
terprocedural analysis, the call relation (i.e., Edge 5->8) and return
value (i.e., Edge 11->5) information is added. To reduce irrelevant
nodes, we adopt the sensitive function call at line 5 (i.e., Node 5
highlighted in red) as the program point to perform backward and
forward slicing. Node 6 is control dependent on Node 5 with an
Edge 5->6, and data dependent on Node 4 with an Edge 4->6. After
slicing, Node 6 is removed because it is not data-dependent on Node
5.

3.2 Node Embedding
After feature extraction, we transform all statement nodes in the
graph into low-dimensional vectors as input to the graph neural
network models.

We use Doc2Vec [39] to represent code statements as vectors
since it is a widely-used technique [20, 28] to encode the documents
(i.e., code statements) instead of an individual word (e.g., a variable)
into a fixed-length vector. Then, the vectors of the statement and
context words are input to the hidden layer to obtain the interme-
diate vector as the input of softmax layer. Finally, in the inference
stage, the vector of a given statement is achieved through Stochastic
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Figure 3: Details of Feature Extraction

backward and forward slicing from the program point of interest
to avoid noise induced by irrelevant statements.

To ensure that the generated slices contain memory-related vul-
nerabilities, we mainly focus on two types of program points of
interest: 1) system API calls, and 2) pointer variable. As mentioned in
previous works [20, 45, 46, 72], the misuse of system API calls is one
of the major causes of vulnerabilities, including memory-related
vulnerabilities. For example, syscall_buf is a typical system API
call related to buffer operations in Linux Kernel. It often occurs in
Out-of-bounds Read/Write and other similar buffer-related vulner-
abilities. In total, we conclude 217 system API calls from several
static memory detectors [24, 56] as slicing criteria for extracting
vulnerable code snippets. For pointer variable, it has been widely
adopted by traditional static analysis-based approaches [24, 40, 60].

It should be noted that starting from the program point of interest,
we perform backward slicing according to both control- and data-
dependence, but forward slicing based on only data-dependence
because improper memory operations (e.g., allocating memory but
not freeing it) have been involved in the forward data-dependence,
and usually forward control-dependence will induce a great deal of
irrelevant statements.

Figure 3 provides an example to show the process of feature
extraction. As shown in Figure 3a, it is a memory leak vulnerabil-
ity. At line 5, it allocates memory through malloc() in function
memory_leak_func() without freeing even to the end of the
program. In our approach, the control- and data-flow information
of the vulnerable program is first extracted to construct the PDG
of the program, which is shown in Figure 3b. Then, based on in-
terprocedural analysis, the call relation (i.e., Edge 5->8) and return
value (i.e., Edge 11->5) information is added. To reduce irrelevant
nodes, we adopt the sensitive function call at line 5 (i.e., Node 5
highlighted in red) as the program point to perform backward and
forward slicing. Node 6 is control dependent on Node 5 with an
Edge 5->6, and data dependent on Node 4 with an Edge 4->6. After
slicing, Node 6 is removed because it is not data-dependent on Node
5.

3.2 Node Embedding
After feature extraction, we transform all statement nodes in the
graph into low-dimensional vectors as input to the graph neural
network models.

We use Doc2Vec [39] to represent code statements as vectors
since it is a widely-used technique [20, 28] to encode the documents
(i.e., code statements) instead of an individual word (e.g., a variable)
into a fixed-length vector. Then, the vectors of the statement and
context words are input to the hidden layer to obtain the interme-
diate vector as the input of softmax layer. Finally, in the inference
stage, the vector of a given statement is achieved through Stochastic
Gradient Descent (SGD) [57]. In this way, the Doc2Vec can provide
a more precise embedding of the code statement that will preserve
the semantic information.
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3.3 Graph Learning
To train a model which can learn implicit vulnerability patterns
from source code and identify suspicious vulnerable statements, we
construct a novel graph learning framework, Flow-Sensitive Graph
Neural Network (FS-GNN) for graph learning. The details of our
approach are shown in Figure 4. The key insight of FS-GNN is to
jointly embed both statement embedding and flows information
to capture sensitive contextual information for semantic learning.
FS-GNN is composed of three parts: graph embedding, resampling
and classification.

Graph Embedding. Different from most of the existing graph
embedding approaches that embed only nodes in the graph, we
leverage the entity-relation composition operations 𝜙 (·) used in
Knowledge Graph embedding approaches [14] to jointly embed
statement nodes and multiple flow edges to incorporate edge em-
bedding into the update of node information. To be specific, during
the process of graph embedding in FS-GNN, the node embedding
ℎ𝑣 of statement node 𝑣 can be updated by:

𝒉𝑣 = 𝑓
©«

∑︁
(𝑢,𝑟 ) ∈N(𝑣)

𝑾𝜆 (𝑟 )𝜙 (𝒙𝑢 , 𝒛𝑟 )ª®¬ (1)

where 𝒉𝑣 denotes the updated representation of node 𝑣 . N(𝑣)
is a set of immediate neighbors of v for its outgoing edges. 𝜙 (·) is
a composition operator, including subtraction, multiplication, and
circular-correlation. 𝒙𝑢 and 𝒛𝑟 denotes initial features for node 𝑢
(encoded by Doc2Vec) and edge 𝑟 , respectively. Similar to tradi-
tional Relational Graph Neural Networks (RGCN) [54], initial edge
representation for edge 𝑟 can be encoded by basis decomposition

[54] as 𝒛𝑟 =
B∑
𝑏=1

𝛼𝑏𝑟𝒗𝑏 , where 𝒗𝑏∈B is a set of learnable basis vec-

tors and 𝛼𝑏𝑟 ∈ R is also the learnable scalar weight specific to edge
type and basis. 𝑾𝜆 (𝑟 ) represents a edge type specific parameter. To
make FS-GNN context-aware and capture important information
from outgoing edges, we double edges by adding inverse edges and
assign different weight parameters according to edge types (i.e.,
𝑾𝜆 (𝑟 ) =𝑾𝑂 when 𝑟 is an initial edge, and 𝑾𝜆 (𝑟 ) =𝑾 𝐼 when 𝑟 is
an inverse edge).

Similarly, the edge embedding ℎ𝑟 of edge 𝑟 can be updated by
𝒉𝑟 = 𝑾𝑟𝑒𝑙𝒛𝑟 , where 𝑾𝑟𝑒𝑙 is a learnable transformation matrix
which projects all the relations to the same embedding space as
nodes.

Finally, the representation of a node 𝑣 and edge 𝑟 updated after 𝑙
layers are shown as:

𝒉𝑙+1𝑣 = 𝑓
©«

∑︁
(𝑢,𝑟 ) ∈N(𝑣)

𝑾𝑙
𝜆 (𝑟 )𝜙 (𝒉𝑙𝑢 ,𝒉𝑙𝑟 )

ª®¬ (2)

𝒉𝑙+1𝑟 =𝑾𝑙
𝑟𝑒𝑙𝒛

𝑙
𝑟 (3)

Note that ℎ0𝑣 = 𝑥𝑢 and ℎ0𝑟 = 𝑧𝑟 (i.e., initial representation of node
𝑣 and edge 𝑟 ).

With the help of our flow-sensitive graph learning, contextual
information can be captured and sensitive flow information is given
more attention. For example, in Figure 4, initial node representa-
tion is encoded by Doc2Vec and edge representation is calculated
by basis decomposition. Edge matrix is inversed first to capture

contextual feature information. Then, to aggregate information
from neighbor nodes to update the representation of Node 3, initial
representations of Nodes 1, 4, 5 are embedded jointly with their
incoming edges (i.e., Edges 3->1, 3->4, 3->5) by Eq. 2 to preserve
some important features from outgoing nodes.

Resampling. After 𝑙 layers graph learning, directly training the
classifiers on all statement nodes is biased because the distribution
of non-vulnerable nodes and vulnerable nodes is extremely imbal-
anced. For example, in Figure 3, although we have filtered out some
irrelevant nodes by program slicing, the number of non-vulnerable
nodes (i.e., Node 1-4, 6, 8-11) is still larger than that of vulnera-
ble nodes (i.e., Node 5). To generate some synthetic vulnerable
nodes to re-balance the distribution, we adopt GraphSMOTE [69], a
graph-level oversampling framework, as the basic component for
our resampling.

Concretely, it contains two steps: (1) node generation, and (2)
edge generation. Firstly, to generate high-quality synthetic nodes,
we utilize the widely-used SMOTE [18] algorithm to perform inter-
polation on vulnerable nodes. It searches for the closest neighbour
node around each minority node (i.e., vulnerable node) in the em-
bedding space and generates synthetic nodes between them. Then,
edge generator adopts weighted inner production [69] to generate
edges and gives link predictions for synthetic nodes by setting a
threshold 𝜂 to keep the connectivity of the graph. If the predicted
probability of connection between synthetic node 𝑣 ′ and its closest
neighbor node 𝑢 is greater than 𝜂, both the synthetic node 𝑣 ′ and
edge [𝑣 ′, 𝑢] will be put into the augmented adjacency matrix of
original graphs. To make the analysis easier, the type of all synthetic
edges is set as "Control" (i.e., synthetic nodes are control-dependent
on their neighbor nodes)2.

Owing to the contribution of resampling, the proportion of
memory-related vulnerable statements increases, avoiding the well-
trained detection model biased caused by imbalanced distribution
of vulnerable nodes and non vulnerable nodes. For example, in
Figure 4, three synthetic nodes (Pink-shaded) are connected with
one vulnerable node (i.e., Node 5) and one non-vulnerable node
(i.e., Node 11).

Classification. Before training the classification model, FS-GNN
adopts one-layer flow-sensitive graph learning block in Section 3.1
again to update node information by Eq. 2. By learning both the un-
structured (i.e., statement embedding) and structured (i.e., various
flows) features from nodes and edges, the classification model are
employed to distinguish vulnerable and non-vulnerable statements.

To train the model, we use the softmax activation function as the
last linear layer for node classification and minimize the following
cross-entropy loss on all labeled nodes (i.e., vulnerable or non-
vulnerable):

𝑚𝑖𝑛
𝜃

L = −
∑︁
𝐺 ∈G

1

|V|
∑︁
𝑖∈V

𝐾∑︁
𝑘=1

𝑡𝑖𝑘 lnℎ
(𝐿)
𝑖𝑘 (4)

where 𝐺 is a code slice graph in the training set G, V is the
set of nodes in our training set. ℎ (𝐿)

𝑖𝑘
represents the probability of

node 𝑖 belonging to class 𝑘 , where 𝑘 = {0, 1} for the binary node

2We omit data-dependency flow because during the empirical study, we find that a
large number of irrelevant synthetic data-dependency edges can introduce biases and
make the performance of the detection model deteriorate.
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Figure 4: Graph Learning with FS-GNN

classification task. 𝑡𝑖𝑘 denotes respective ground truth label for
node 𝑖 .

3.4 Vulnerability Detection
In the detection phase, we apply the well-trained model to detect
potential memory-related vulnerabilities in programs and identify
suspicious statements.

Specifically, similar to training phase, program semantics re-
flected in the graph representations of source code are captured
through interprocedural analysis. In order to reduce the number
of memory operations-irrelevant statements, programs are sliced
according to points of interest (system API calls and pointer variable)
to obtain a batch of program slices (Section 3.1). Next, statement
nodes in program slices are embedded into low-dimensional vec-
tors through Doc2Vec (Section 3.2). Finally, both unstructured (i.e.,
statement embedding) and structured (i.e., control- and data-flow)
information are used as graph input to feed into the well-trained
detection model for vulnerability detection.

4 EXPERIMENTS
4.1 Research Questions
RQ1. How effective is MVD in detecting memory-related vulner-
abilities compared to existing deep learning-based vulnerability
detection approaches?

Works most relevant to MVD are deep learning-based vulner-
ability detection approaches. By investigating this RQ, we aim
to answer how well does MVD perform in comparison with the
state-of-the-art deep learning-based approaches in memory-related
vulnerability detection.
RQ2. How effective is MVD in detecting memory-related vulnera-
bilities compared to static analysis-based vulnerability detectors?

Static analysis-based vulnerability detection tools are widely-
used and perform well on memory-related vulnerabilities. In addi-
tion, static analysis-based approaches can identify the statement-
level results for vulnerability detection (i.e., fine-grained detection
results). Therefore, the purpose of this RQ is to analyze how MVD
perform compared with existing static analysis-based detectors.
RQ3. How effective is FS-GNN for memory-related vulnerability
detection?

One of the key contributions of our approach is Flow-Sensitive
Graph Neural Network, which jointly embeds both unstructured
(i.e., code snippets) and structured (i.e., control- and data-flows)
information to learn comprehensive and precise program semantics.
Different from RQ1, we aim to show whether sensitive contextual
information captured by FS-GNN contributes to memory-related
vulnerability detection in comparison with other popular GNNs
(i.e., evaluating the effectiveness of fully utilizing flow information).
RQ4. How efficient are MVD and baselines in terms of their time
cost for detecting memory-related vulnerabilities?

Efficiency is important for evaluating the performance of memory-
related vulnerability detection approaches. An approach which
costs too much time for detecting vulnerabilities may encounter
adoption barriers in practice. This RQ is to investigate whether
MVD can make a better trade-off between accuracy and efficiency.

4.2 Experiment Setup
4.2.1 Dataset. Since existing vulnerability datasets are either not
tailored for memory-related vulnerabilities [17, 20, 25, 29, 71], or not
sufficient for training deep learning models (e.g., SPEC CINT2000
[32]), we manually constructed a new vulnerability dataset which
covers 13 common memory-related vulnerabilities (including CWE-
119, -120, -121, -122, -124, -125, -126, -401, -415, -416, -476, -787, and
-824) for model training and evaluation. Our dataset is based on two
widely-adopted sources: (1) SARD [13], a well-known sample vul-
nerability data set, and (2) CVE [2], a famous vulnerability database.
In this work, we focused on C/C++ programs due to their frequent
memory problems caused by low-level control of memory [63] and
adopted vulnerability types (i.e., CWE-IDs [3]) as our search criteria
to collect memory-related vulnerabilities from SARD and CVE. For
real-world vulnerabilities, we only considered CVEs which contain
source code and from which we collect both vulnerable functions
and corresponding patched functions. For SARD, we collected all
test cases labeled as "bad".

The statistics of the vulnerable programs in our dataset are
shown in Table 1. It includes 1,208 real-world vulnerabilities in CVE,
covering 10 open-source C/C++ projects which are widely adopted
as target projects by prior works [27, 45, 46, 71], and 3,145 vulnera-
ble samples (i.e., test cases) in SARD. Column 2 represents the scope
of project versions affected by vulnerabilities in our dataset. Column
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Table 1: Details of vulnerability dataset.

Project #Version #Samples #Vertices #Edges

Linux Kernel 2.6-4.20 868 26,917 29,512
FFmpeg 0.5-4.1 73 1,971 2,168
Asterisk 1.4-16.14 18 468 502

Libarchive 2.2-3.4 11 235 269
Libming 0.4.7 7 119 141
LibTIFF 3.8-4.0 24 584 639
Libav 12.3 16 526 573

LibPNG 1.0.x-1.6.x 13 392 447
QEMU 0.9-4.3 121 4,711 5,308

Wireshark 1.2-3.2 57 2,056 2,190
SARD - 3,145 11,237 13,049
Total - 4,353 49,216 54,798

Figure 5: Distribution of Vulnerability Types

3 denotes the number of vulnerable samples. A vulnerable sample
may contain one or more vulnerable functions. Column 4 and Col-
umn 5 are the number of nodes and edges in slices, respectively.
Furthermore, the distribution of different types of memory-related
vulnerabilities in our dataset is shown in Figure 5, with CWE-119
(Improper Restriction of Operations within the Bounds of a Mem-
ory Buffer) accounting for the highest percentage at 40% (including
1731 vulnerable samples).

4.2.2 Data Labeling. To train a detection model, we first need to
conduct data labeling. There are two types of labels for statement
nodes in the graph representation of a program: 1) vulnerable rep-
resents that the node is related to an improper operation in the
vulnerable programs; 2) non-vulnerable represents that the node is
related to the normal operation. To make this process automatic, we
adopted a simple labeling strategy with diff files. We first conduct
program slicing for each vulnerable sample to generate a number of
slices. Then, for each slice of the samples in SARD, we labeled the
statement nodes annotated with "errors" as vulnerable. For each slice
of the real-world vulnerabilities in CVE, we compared statements in
each slice and that in the corresponding vulnerable function accord-
ing to diff files. If a statement was deleted or altered (i.e., starting
with "-" in diff files), it would be labeled as vulnerable, and non-
vulnerable otherwise. However, in practice, part of memory-related

vulnerabilities did not contain "-" in their patches. For example, in
CVE-2019-19083 [6], memory leaks because allocated memory can
not be released when memory allocation fails. This vulnerability
can be fixed by adding a memory release statement. Thus, for these
vulnerabilities can not be directly labeled, we manually labeled vul-
nerable nodes through identifying improper operations [49] (e.g.,
memory allocation or deallocation statements). In order to avoid
introducing artificial deviation, two postgraduates and one Ph.D
participated in this labeling process. If two postgraduates disagreed
on the label of the same sample, the sample would be forwarded to
the Ph.D evaluator for further investigation.

4.2.3 Baseline Methods. To answer the first research question, we
selected three state-of-the-art DL-based vulnerability detection
techniques, i.e., VulDeePecker [46], SySeVR [45], and Devign [71].
VulDeePecker and SySeVR represented source code as sequences
and used BiLSTM model for vulnerability detection at the slice-
level. Devign constructed a joint graph structure (including AST,
CFG, DFG, and code sequences) and used GGNN model to detect
vulnerabilities at the function-level. They are widely adopted as
baselines in recent works [20, 44, 64] and have been shown to
be effective in detecting memory-related vulnerabilities [20] even
though they are designed for generic vulnerability detection.

To investigate RQ2, we selected five popular static analysis-based
vulnerability detectors, i.e., PCA [40], Saber [60], Flawfinder [8],
RATS [12], and Infer [9]. They have shown relatively good perfor-
mance on memory-related vulnerabilities and are widely adopted
as baselines in prior works [20, 24, 45, 46].

4.2.4 Implementation. We implemented MVD in Python using Py-
Torch [11]. Our experiments were performed with the Nvidia Graph-
ics Tesla T4 GPU, installed with Ubuntu 18.04, CUDA 10.1.

The neural networks are trained in a batch-wise fashion until
converging and the batch size is set to 32. The dimension of the
vector representation of each node is set to 100 and the dropout is
set to 0.1. ADAM [36] optimization algorithm is used to train the
model with the learning rate of 0.001. Weight decay is set to 5𝑒-1
and over-sampling scale is set as 1.0. The other hyper-parameters
of our neural network are tuned through grid search.

For RQ1, it is unfair to compare MVD with other DL-based
approaches because of our finer granularity. Thus, we used the
function-level as a compromise formula, i.e., if a vulnerable state-
ment was identified correctly by MVD, we would consider the
function it belonged to was also detected correctly. For DL-based
baselines, we respectively used the vulnerable and non-vulnerable
functions as positive and negative samples to train the detection
models. For MVD, we only trained the detection model based on
vulnerable functions (i.e., vulnerable statements are deemed as
positive samples, while non-vulnerable statements are deemed as
negative samples). We randomly chose 80% of the programs for
training and the remaining 20% for testing. To make sure that our
model was fine-tuned, we used ten-fold cross-validation to evaluate
the generalization ability of each approach. In RQ2, we evaluated
MVD and static analysis-based approaches at the function-level and
statement-level, respectively. At the function-level, we adopted the
same experimental setup as RQ1. At the statement-level, we eval-
uated each approach by randomly selecting 30 latest real-world
vulnerabilities (reported in 2021) from our dataset, covering five
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Table 2: Comparison with DL-based approaches

Approach A (%) P (%) R (%) F1 (%)

VulDeePecker 60.9 51.4 35.1 41.7
SySeVR 63.4 53.3 62.9 57.7
Devign 68.3 54.8 66.1 59.9
MVD 74.1 61.5 69.4 65.2

common memory-related vulnerabilities (including Memory Leak
(ML), Double Free (DF), Buffer Overflow (BO), Use-After-Free (UAF),
and Out-of-bounds Read/Write (OR/W)). These vulnerabilities are
representative because they cover the vast majority of the vul-
nerability types in our dataset. For example, Buffer Overflow (BO)
corresponds to multiple CWEs, including CWE-119, -120, -121, and
-122. To ensure that the trained model is tested on "unseen" pro-
grams, we excluded these samples from the training set of MVD. For
answering RQ3, we respectively replaced our FS-GNN model with
three famous GNN models, including GCN [37], GGNN [43], and
RGCN [54], to evaluate the contribution of each model to memory-
related vulnerability detection. For answering RQ4, we recorded
the average training and detection time of each approach in RQ1
and RQ2 to evaluate time cost of MVD and baselines.

4.3 Evaluation Metrics
We used the following evaluation metrics to measure the effective-
ness of our model:

Accuracy (A) evaluates the performance that how many in-
stances can be correctly labeled. It is calculated as:

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁
(5)

Precision (P) is the fraction of true vulnerabilities among the
detected ones. It is defined as:

𝑷𝒓𝒆𝒄 𝒊𝒔 𝒊𝒐𝒏 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(6)

Recall (R) measures how many vulnerabilities can be correctly
detected. It is calculated as:

𝑹𝒆𝒄𝒂𝒍 𝒍 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(7)

F1 score (F1) is the harmonic mean of 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and
can be calculated as:

𝑭1 𝒔𝒄𝒐𝒓𝒆 = 2
𝑅𝑒𝑐𝑎𝑙𝑙 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(8)

5 EXPERIMENTAL RESULTS
5.1 RQ1: MVD VS. DL-Based Approaches
Table 2 shows the overall results of each deep learning-based ap-
proach in terms of the aforementioned evaluation metrics. Overall,
MVD achieves better results and outperforms all of the three re-
ferred deep learning-based approaches. On average, for MVD, the
Accuracy is 74.1%, the Precision is 61.5%, the Recall is 69.4%, and
the F1 score is 65.2%. Moreover, in terms of all metrics, MVD can
improve the best performed baseline Devign by 5.0%-12.2%.

MVD vs. VulDeePecker. As shown in Table 2, our approach im-
proves Accuracy, Precision, and F1 score over VulDeePecker by
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Table 2: Comparison with DL-based approaches

Approach A (%) P (%) R (%) F1 (%)

VulDeePecker 60.9 51.4 35.1 41.7
SySeVR 63.4 53.3 62.9 57.7
Devign 68.3 54.8 66.1 59.9
MVD 74.1 61.5 69.4 65.2

training and the remaining 20% for testing. To make sure that our
model was fine-tuned, we used ten-fold cross-validation to evaluate
the generalization ability of each approach. In RQ2, we evaluated
MVD and static analysis-based approaches at the function-level and
statement-level, respectively. At the function-level, we adopted the
same experimental setup as RQ1. At the statement-level, we eval-
uated each approach by randomly selecting 30 latest real-world
vulnerabilities (reported in 2021) from our dataset, covering five
common memory-related vulnerabilities (including Memory Leak
(ML), Double Free (DF), Buffer Overflow (BO), Use-After-Free (UAF),
and Out-of-bounds Read/Write (OR/W)). These vulnerabilities are
representative because they cover the vast majority of the vul-
nerability types in our dataset. For example, Buffer Overflow (BO)
corresponds to multiple CWEs, including CWE-119, -120, -121, and
-122. To ensure that the trained model is tested on "unseen" pro-
grams, we excluded these samples from the training set of MVD. For
answering RQ3, we respectively replaced our FS-GNN model with
three famous GNN models, including GCN [37], GGNN [43], and
RGCN [54], to evaluate the contribution of each model to memory-
related vulnerability detection. For answering RQ4, we recorded
the average training and detection time of each approach in RQ1
and RQ2 to evaluate time cost of MVD and baselines.

4.3 Evaluation Metrics
We used the following evaluation metrics to measure the effective-
ness of our model:

Accuracy (A) evaluates the performance that how many in-
stances can be correctly labeled. It is calculated as 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃+𝑇𝑁
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Recall (R) measures how many vulnerabilities can be correctly

detected. It is calculated as 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 .

F1 score (F1) is the harmonic mean of 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and
can be calculated as 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 𝑅𝑒𝑐𝑎𝑙𝑙 ·𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .

5 EXPERIMENTAL RESULTS
5.1 RQ1: MVD VS. DL-Based Approaches
Table 2 shows the overall results of each deep learning-based ap-
proach in terms of the aforementioned evaluation metrics. Overall,
MVD achieves better results and outperforms all of the three re-
ferred deep learning-based approaches. On average, for MVD, the
Accuracy is 74.1%, the Precision is 61.5%, the Recall is 69.4%, and
the F1 score is 65.2%. Moreover, in terms of all metrics, MVD can
improve the best performed baseline Devign by 5.0%-12.2%.

1 void invalid_memory_access (){
2 int i=1;
3 char *buf,*c;
4 while(i>0) {
5 buf = (char *) malloc (25 * sizeof(char));
6 if(buf!=NULL)
7 strcpy(buf,"This is String");
8 free(buf);
9 c = buf;
10 i++;
11 if(i>=10)
12 break;}
13 psink = c;
14 }

1 static int __init init_msp_flash(void){
2 ...
3 msp_parts[i] = kcalloc(...), GFP_KERNEL);
4 ...
5 if (msp_maps[i].virt == NULL) {
6 kfree(msp_parts[i]);
7 goto cleanup_loop;}
8 if (!msp_maps[i].name) {
9 kfree(msp_parts[i]);
10 goto cleanup_loop;}
11 ...
12 }

1 static bool try_merge_free_space(...){
2 ...
3 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
4 if (right_info && rb_prev(&right_info->offset_index))
5 left_info = rb_entry(rb_prev(&right_info->offset_index),

struct btrfs_free_space, offset_index);↩→
6 else
7 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
8 if (...) { ...
9 kmem_cache_free(btrfs_free_space_cachep, right_info);
10 merged = true;}
11 if (...) { ...
12 info->offset = left_info->offse;
13 info->bytes += left_info->bytes}
14 return merged;
15 }
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MVD vs. VulDeePecker. As shown in Table 2, our approach im-
proves Accuracy, Precision, and F1 score over VulDeePecker by
21.7%, 19.6%, and 56.4%. Specifically, VulDeePecker achieves the Re-
call of only 35.1%. By contrast, the Recall of MVD is as high as 69.4%,
nearly double (1.98x). Poor Recall indicates a great deal of vulnera-
bilities can not be detected by VulDeePecker. A main reason is that
VulDeePecker only takes data-flow into account without regard to
control-flow information. For example, as shown in Figure 6a, it
contains a invalid memory access vulnerability at line 9 because
buf has been freed at line 8 in an infinite while loop. However,
it is missed by VulDeePecker in our experiment because without
control-flow information, semantics of different branch structures
will be ignored.

MVD vs. SySeVR. We can observe from Table 2 that, in spite of
significant improvement (1.79x) in Recall (62.9%) in comparison
with VulDeePecker, SySeVR still behaves worse than MVD in terms
of each metric. Particularly, MVD improves Precision over SySeVR
by 15.4%. The root cause for this performance gap is that SySeVR
cannot overcome the main limitation of sequence models (e.g.,
BiLSTM) in program semantics modeling. For example, in Figure

(a) A Vulnerability Missed by VulDeePecker
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training and the remaining 20% for testing. To make sure that our
model was fine-tuned, we used ten-fold cross-validation to evaluate
the generalization ability of each approach. In RQ2, we evaluated
MVD and static analysis-based approaches at the function-level and
statement-level, respectively. At the function-level, we adopted the
same experimental setup as RQ1. At the statement-level, we eval-
uated each approach by randomly selecting 30 latest real-world
vulnerabilities (reported in 2021) from our dataset, covering five
common memory-related vulnerabilities (including Memory Leak
(ML), Double Free (DF), Buffer Overflow (BO), Use-After-Free (UAF),
and Out-of-bounds Read/Write (OR/W)). These vulnerabilities are
representative because they cover the vast majority of the vul-
nerability types in our dataset. For example, Buffer Overflow (BO)
corresponds to multiple CWEs, including CWE-119, -120, -121, and
-122. To ensure that the trained model is tested on "unseen" pro-
grams, we excluded these samples from the training set of MVD. For
answering RQ3, we respectively replaced our FS-GNN model with
three famous GNN models, including GCN [37], GGNN [43], and
RGCN [54], to evaluate the contribution of each model to memory-
related vulnerability detection. For answering RQ4, we recorded
the average training and detection time of each approach in RQ1
and RQ2 to evaluate time cost of MVD and baselines.

4.3 Evaluation Metrics
We used the following evaluation metrics to measure the effective-
ness of our model:
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Table 2 shows the overall results of each deep learning-based ap-
proach in terms of the aforementioned evaluation metrics. Overall,
MVD achieves better results and outperforms all of the three re-
ferred deep learning-based approaches. On average, for MVD, the
Accuracy is 74.1%, the Precision is 61.5%, the Recall is 69.4%, and
the F1 score is 65.2%. Moreover, in terms of all metrics, MVD can
improve the best performed baseline Devign by 5.0%-12.2%.
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MVD vs. VulDeePecker. As shown in Table 2, our approach im-
proves Accuracy, Precision, and F1 score over VulDeePecker by
21.7%, 19.6%, and 56.4%. Specifically, VulDeePecker achieves the Re-
call of only 35.1%. By contrast, the Recall of MVD is as high as 69.4%,
nearly double (1.98x). Poor Recall indicates a great deal of vulnera-
bilities can not be detected by VulDeePecker. A main reason is that
VulDeePecker only takes data-flow into account without regard to
control-flow information. For example, as shown in Figure 6a, it
contains a invalid memory access vulnerability at line 9 because
buf has been freed at line 8 in an infinite while loop. However,
it is missed by VulDeePecker in our experiment because without
control-flow information, semantics of different branch structures
will be ignored.

MVD vs. SySeVR. We can observe from Table 2 that, in spite of
significant improvement (1.79x) in Recall (62.9%) in comparison
with VulDeePecker, SySeVR still behaves worse than MVD in terms
of each metric. Particularly, MVD improves Precision over SySeVR
by 15.4%. The root cause for this performance gap is that SySeVR
cannot overcome the main limitation of sequence models (e.g.,
BiLSTM) in program semantics modeling. For example, in Figure

(b) A Non-vulnerable Code Sample Misidentified by SySeVR
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training and the remaining 20% for testing. To make sure that our
model was fine-tuned, we used ten-fold cross-validation to evaluate
the generalization ability of each approach. In RQ2, we evaluated
MVD and static analysis-based approaches at the function-level and
statement-level, respectively. At the function-level, we adopted the
same experimental setup as RQ1. At the statement-level, we eval-
uated each approach by randomly selecting 30 latest real-world
vulnerabilities (reported in 2021) from our dataset, covering five
common memory-related vulnerabilities (including Memory Leak
(ML), Double Free (DF), Buffer Overflow (BO), Use-After-Free (UAF),
and Out-of-bounds Read/Write (OR/W)). These vulnerabilities are
representative because they cover the vast majority of the vul-
nerability types in our dataset. For example, Buffer Overflow (BO)
corresponds to multiple CWEs, including CWE-119, -120, -121, and
-122. To ensure that the trained model is tested on "unseen" pro-
grams, we excluded these samples from the training set of MVD. For
answering RQ3, we respectively replaced our FS-GNN model with
three famous GNN models, including GCN [37], GGNN [43], and
RGCN [54], to evaluate the contribution of each model to memory-
related vulnerability detection. For answering RQ4, we recorded
the average training and detection time of each approach in RQ1
and RQ2 to evaluate time cost of MVD and baselines.

4.3 Evaluation Metrics
We used the following evaluation metrics to measure the effective-
ness of our model:

Accuracy (A) evaluates the performance that how many in-
stances can be correctly labeled. It is calculated as 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
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5 EXPERIMENTAL RESULTS
5.1 RQ1: MVD VS. DL-Based Approaches
Table 2 shows the overall results of each deep learning-based ap-
proach in terms of the aforementioned evaluation metrics. Overall,
MVD achieves better results and outperforms all of the three re-
ferred deep learning-based approaches. On average, for MVD, the
Accuracy is 74.1%, the Precision is 61.5%, the Recall is 69.4%, and
the F1 score is 65.2%. Moreover, in terms of all metrics, MVD can
improve the best performed baseline Devign by 5.0%-12.2%.
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MVD vs. VulDeePecker. As shown in Table 2, our approach im-
proves Accuracy, Precision, and F1 score over VulDeePecker by
21.7%, 19.6%, and 56.4%. Specifically, VulDeePecker achieves the Re-
call of only 35.1%. By contrast, the Recall of MVD is as high as 69.4%,
nearly double (1.98x). Poor Recall indicates a great deal of vulnera-
bilities can not be detected by VulDeePecker. A main reason is that
VulDeePecker only takes data-flow into account without regard to
control-flow information. For example, as shown in Figure 6a, it
contains a invalid memory access vulnerability at line 9 because
buf has been freed at line 8 in an infinite while loop. However,
it is missed by VulDeePecker in our experiment because without
control-flow information, semantics of different branch structures
will be ignored.

MVD vs. SySeVR. We can observe from Table 2 that, in spite of
significant improvement (1.79x) in Recall (62.9%) in comparison
with VulDeePecker, SySeVR still behaves worse than MVD in terms
of each metric. Particularly, MVD improves Precision over SySeVR
by 15.4%. The root cause for this performance gap is that SySeVR
cannot overcome the main limitation of sequence models (e.g.,
BiLSTM) in program semantics modeling. For example, in Figure
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21.7%, 19.6%, and 56.4%. Specifically, VulDeePecker achieves the Re-
call of only 35.1%. By contrast, the Recall of MVD is as high as 69.4%,
nearly double (1.98x). Poor Recall indicates a great deal of vulnera-
bilities can not be detected by VulDeePecker. A main reason is that
VulDeePecker only takes data-flow into account without regard to
control-flow information. For example, as shown in Figure 6a, it
contains a invalid memory access vulnerability at line 9 because
buf has been freed at line 8 in an infinite while loop. However,
it is missed by VulDeePecker in our experiment because without
control-flow information, semantics of different branch structures
will be ignored.

MVD vs. SySeVR. We can observe from Table 2 that, in spite of
significant improvement (1.79x) in Recall (62.9%) in comparison
with VulDeePecker, SySeVR still behaves worse than MVD in terms
of each metric. Particularly, MVD improves Precision over SySeVR
by 15.4%. The root cause for this performance gap is that SySeVR
cannot overcome the main limitation of sequence models (e.g.,
BiLSTM) in program semantics modeling. For example, in Figure
6b, there is a non-vulnerable code sample from Linux Kernel, which
is misidentified by SySeVR. Although SySeVR captures control- and
data-dependence relations between statements by constructing
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Table 3: Comparison with static analysis-based approaches

Approach A (%) P (%) R (%) F1 (%)

PCA 65.2 48.9 61.1 54.3
Saber 64.4 47.6 59.2 52.8

Flawfinder 61.1 18.2 23.5 20.5
RATS 56.3 7.9 11.6 9.4
Infer 50.7 33.1 54.8 41.3
MVD 67.6 54.8 63.6 58.9

Control Flow Graph (CFG) and Data Flow Graph (DFG), program
semantics implied in these information can not be utilized because
SySeVR treats complex code structures as a sequential sequence
of tokens, which omits the control flow divergence. Thus, this
sample is misidentified as double free because msp_parts[i] is
considered to be freed twice by kfree at line 6 and line 9.

MVD vs. Devign. MVD also outperforms the best performed base-
line Devign. It indicates that although powerful performance of
GNN in inferring potential vulnerability semantics from graph
representation of the program makes Devign outstanding, the un-
derutilization of flow information still restricts the performance of
Devign in detecting more complex memory-related vulnerabilities.
For example, as shown in Figure 6c, it is a real-world vulnera-
bility (CVE-2019-19448 [7]) in Linux Kernel missed by Devign. It
may lead to arbitrary address free or double free vulnerability by
attacker because in certain situations, the pointer left_info
at line 7 can be the same as right_info at line 3. However, af-
ter right_info has been freed at line 9, left_info which is
the same as right_info will be used at line 12-13 again. There
are two main reasons why this vulnerability cannot be detected by
Devign. On the one hand, due to the lack of interprocedural analysis,
precise program semantics like memory free (kmem_cache_free
at line 9) are hard to be captured by Devign, causing imprecise se-
mantic modeling. On the other hand, since Devign processes mul-
tiple flows information by passing information in each individual
graph and then aggregates them across graphs, left_info and
right_info are treated as different data-flows, which causes
complex semantic relations difficult to be preserved.

Answer to RQ1: In comparison with the popular DL-based
approaches, MVD achieves better detection performance by
fully utilizing flow information via interprocedural analy-
sis and FS-GNN.

5.2 RQ2: MVD VS. Static Analysis-Based
Approaches

Table 3 shows the experimental results of MVD and the static
analysis-based techniques. Overall, MVD outperforms all baselines
with regard to the evaluation metrics.

Among all static analysis-based baselines, PCA and Saber obtain
relatively better detection performance. PCA achieves the highest
Precision (48.9%) and Recall (61.1%) due to its consideration of global
variables and accurate interprocedural flow analysis. Our approach
still improves PCA by 4.1% in terms of Recall, and by 12.1% in terms
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Figure 7: The Number of Memory-Related Vulnerabilities in
Real-World Projects Detected by Each Approach (ML: Mem-
ory Leak; DF: Double Free; BO: Buffer Overflow; UAF: Use-
After-Free; OR/W: Out-of-bounds Read/Write)
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1 static int l2tp_ip_bind(struct sock *sk, struct sockaddr *uaddr,

int addr_len){↩→
2 ...
3 - if (!sock_flag(sk, SOCK_ZAPPED))
4 - return -EINVAL;
5 ...
6 read_unlock_bh(&l2tp_ip_lock);
7 lock_sock(sk);
8 + if (!sock_flag(sk, SOCK_ZAPPED))
9 + goto out;

10 ...
11 }

Figure 8: A Use-After-Free Vulnerability (CVE-2016-10200
[4]) Missed by All Static Memory Detectors We Compared

Table 4: Contributions of different graph neural networks

Approach A (%) P (%) R (%) F1 (%)

GCN 61.2 17.3 8.2 11.1
GGNN 69.4 41.8 52.5 46.5
RGCN 72.7 49.3 58.1 53.3

FS-GNN 77.5 56.4 62.9 59.5

edge types into the process of representation learning. It can be
regarded as the joint learning of edge embedding and node em-
bedding. Thus, FS-GNN can preserve the comprehensive program
semantics based on interprocedural control- and data-flow, im-
proving the flow-sensitivity for memory-related vulnerabilities. In
addition, RGCN aggregates node and edge information through
directed edge, while FS-GNN boosts the effect of edge types on
context by adding corresponding inverse edges. Still taking the
double free vulnerability as an example, information of memory
free in different branch statements will affect their condition nodes
jointly. Therefore, important features of output nodes are also pre-
served by FS-GNN for node update and information propagation.
In addition, we can find that although GGNN can process multiple
relations across graphs, it is still limited by the increasing number
of relations, resulting in lower performance in comparison with
RGCN and FS-GNN.

Furthermore, we observe that the performance of GCN is poor.
The main reason is that the neglection of edge types leads to the
missing of structured code features (e.g., control- and data-flow).
Without accurate control- and data-flow information, the perfor-
mance of memory-related vulnerability detection drops sharply.

Answer to RQ3: FS-GNN can effectively contribute to the
performance of MVD, as it can better capture the structured
information of vulnerable code.

5.4 RQ4: Efficiency
Table 5 lists the time cost in seconds of each approach in training
and detecting vulnerabilities. The results show that in comparison
with the popular static analysis-based approaches, MVD achieves
less time cost over other approaches, except PCA. This is because
PCA speeds up data dependence computation through sacrificing
partial detection precision.

Among the four deep learning-based approaches, VulDeePecker
incurs the least training and detection time because it only con-
siders data-flows and uses a simple sequence model, BiLSTM, for
model training. However, combining with the results in Table 2,
we can find that it generates the lowest detection results because
the lack of control-flows and the limitations of sequence model
make it fail to capture the structured information. Compared with
other learning-based approaches, MVD spends relatively longer
training and detection time (excluding Devign) because learning
complicated program semantics in graphs is more time-consuming
than in sequence. However, MVD yields better detection results.
In fact, due to the characteristic that deep learning models can be
trained offline, their training cost may not be that important. Based
on private vulnerability datasets, the users can train their own
detection models offline and make a prediction within seconds.

Answer to RQ4: In spite of a great deal of training time,
MVD achieves relatively shorter detection time with better
detection results, making a trade-off between accuracy and
efficiency.

6 THREATS TO VALIDITY
External validity. The main external threat to our study is the

generalizability of our experiment results. We respectively investi-
gated 4,353 vulnerable samples from 10 distinct C/C++ open-source
projects and SARD, and used the mixed dataset for model evaluation
like prior works. However, due to the huge gap in code complexity,
detection results in practical scenarios may not be so satisfactory.
Furthermore, our experiments are limited to memory-related vul-
nerabilities in C/C++ programs. Results may not be reproducible
when applied to more complex vulnerabilities or languages (e.g.,
Java). Nevertheless, our approach is generic and can be extended
for other vulnerabilities and languages.

Internal validity. Internal validity in our experiment relates to
two factors. The first is our imperfect node labeling. In this work,
we manually labeled nodes which did not contain any "delete" state-
ment as vulnerable through identifying related sensitive operations.
Thus, it is possible that some samples are mislabeled. To avoid
harmful influence caused by incorrect node labels, we tried our
best to conduct the node labeling for the vulnerable samples in our
dataset by three experienced researchers. In addition, the implemen-
tation of baselines also threats the results of our experiments. To
compare with existing deep learning-based vulnerability detection
approaches, we have re-implemented Devign based on a popular
repository3 since it is closed-source. we try our best to build and
tune the Devign parameters on our dataset.

7 RELATED WORKS
Existing memory-related vulnerability detection approaches can be
divided into three main categories: static analysis-based, dynamic
analysis-based, and learning-based approaches.

Static Analysis-Based. Static analysis-based approaches aim
to detect vulnerabilities based on specific vulnerability patterns

3https://github.com/epicosy/devign

Figure 8: A Use-After-Free Vulnerability (CVE-2016-10200
[4]) Missed by All Static Memory Detectors We Compared

of Precision. The reason is that static analysis-based approaches
mainly rely on well-defined vulnerability rules or patterns hand-
crafted by human experts. They are effective in simple memory-
related vulnerabilities (e.g., SARD dataset). However, real-world
vulnerabilities are more complicated, restricting the effectiveness
of these static analysis-based detectors. Similar to these detectors,
MVD also analyzes interprocedural control- and data-flow informa-
tion. Owing to the powerful performance of deep learning models,
MVD can learn implicit vulnerability patterns from vulnerable code,
instead of explicit rules or specifications, making it more effective
in real-world scenarios.

Figure 7 shows the detection results of each approach for five
common memory-related vulnerabilities in real-world projects.
These vulnerabilities are randomly selected from our dataset. Each
detected individual vulnerability successfully is labeled by a dark
circle and the bars on the left-hand side are the total number of
successfully detected vulnerabilities. Overall, MVD outperforms all
baselines by detecting 17 out of 30 vulnerabilities, including nine
vulnerabilities cannot be detected by baselines. Especially, in com-
parison with the best performed baseline PCA, our approach can de-
tect eight more vulnerabilities. For example, as shown in Figure 8, it
is a use-after-free vulnerability because a concurrent call could mod-
ify the socket flags between sock_flag(sk, SOCK_ZAPPED)
at line 4 and lock_sock() at line 8, allowing local users to gain
privileges or cause a denial of service by making multiple bind sys-
tem calls without properly ascertaining whether a socket has the
SOCK_ZAPPED status. Unfortunately, it is missed by all the static
memory detectors because they cannot detect use-after-free caused
by race condition through static analysis only. In our approach, it
can be correctly detected because of the advantage of deep learning
models in mining implicit vulnerability patterns.
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Table 4: Contributions of different graph neural networks

Approach A (%) P (%) R (%) F1 (%)

GCN 61.2 17.3 8.2 11.1
GGNN 69.4 41.8 52.5 46.5
RGCN 72.7 49.3 58.1 53.3

FS-GNN 77.5 56.4 62.9 59.5

Answer to RQ2: With the advantage of deep learning mod-
els in mining implicit vulnerability patterns, MVD performs
better in comparison with the popular static analysis-based
approaches.

5.3 RQ3: FS-GNN VS. Other GNNs
Table 4 shows the results of different GNNs. We observe that FS-
GNN can improve the best performed baseline RGCN by 6.7%-
14.4%. There are mainly two reasons for this. First, FS-GNN adds
edge types into the process of representation learning. It can be
regarded as the joint learning of edge embedding and node em-
bedding. Thus, FS-GNN can preserve the comprehensive program
semantics based on interprocedural control- and data-flow, im-
proving the flow-sensitivity for memory-related vulnerabilities. In
addition, RGCN aggregates node and edge information through
directed edge, while FS-GNN boosts the effect of edge types on
context by adding corresponding inverse edges. Still taking the
double free vulnerability as an example, information of memory
free in different branch statements will affect their condition nodes
jointly. Therefore, important features of output nodes are also pre-
served by FS-GNN for node update and information propagation.
In addition, we can find that although GGNN can process multiple
relations across graphs, it is still limited by the increasing number
of relations, resulting in lower performance in comparison with
RGCN and FS-GNN.

Furthermore, we observe that the performance of GCN is poor.
The main reason is that the neglection of edge types leads to the
missing of structured code features (e.g., control- and data-flow).
Without accurate control- and data-flow information, the perfor-
mance of memory-related vulnerability detection drops sharply.

Answer to RQ3: FS-GNN can effectively contribute to the
performance of MVD, as it can better capture the structured
information of vulnerable code.

5.4 RQ4: Efficiency
Table 5 lists the time cost in seconds of each approach in training
and detecting vulnerabilities. The results show that in comparison
with the popular static analysis-based approaches, MVD achieves
less time cost over other approaches, except PCA. This is because
PCA speeds up data dependence computation through sacrificing
partial detection precision.

Among the four deep learning-based approaches, VulDeePecker
incurs the least training and detection time because it only con-
siders data-flows and uses a simple sequence model, BiLSTM, for
model training. However, combining with the results in Table 2,
we can find that it generates the lowest detection results because
the lack of control-flows and the limitations of sequence model
make it fail to capture the structured information. Compared with
other learning-based approaches, MVD spends relatively longer
training and detection time (excluding Devign) because learning
complicated program semantics in graphs is more time-consuming
than in sequence. However, MVD yields better detection results.
In fact, due to the characteristic that deep learning models can be
trained offline, their training cost may not be that important. Based
on private vulnerability datasets, the users can train their own
detection models offline and make a prediction within seconds.

Answer to RQ4: In spite of a great deal of training time,
MVD achieves relatively shorter detection time with better
detection results, making a trade-off between accuracy and
efficiency.

6 THREATS TO VALIDITY
External validity. The main external threat to our study is the

generalizability of our experiment results. We respectively investi-
gated 4,353 vulnerable samples from 10 distinct C/C++ open-source
projects and SARD, and used the mixed dataset for model evaluation
like prior works. However, due to the huge gap in code complexity,
detection results in practical scenarios may not be so satisfactory.
Furthermore, our experiments are limited to memory-related vul-
nerabilities in C/C++ programs. Results may not be reproducible
when applied to more complex vulnerabilities or languages (e.g.,
Java). Nevertheless, our approach is generic and can be extended
for other vulnerabilities and languages.

Internal validity. Internal validity in our experiment relates to
two factors. The first is our imperfect node labeling. In this work,
we manually labeled nodes which did not contain any "delete" state-
ment as vulnerable through identifying related sensitive operations.
Thus, it is possible that some samples are mislabeled. To avoid
harmful influence caused by incorrect node labels, we tried our
best to conduct the node labeling for the vulnerable samples in our
dataset by three experienced researchers. In addition, the implemen-
tation of baselines also threats the results of our experiments. To
compare with existing deep learning-based vulnerability detection
approaches, we have re-implemented Devign based on a popular
repository3 since it is closed-source. we try our best to build and
tune the Devign parameters on our dataset.

7 RELATED WORKS
Existing memory-related vulnerability detection approaches can be
divided into three main categories: static analysis-based, dynamic
analysis-based, and learning-based approaches.

Static Analysis-Based. Static analysis-based approaches aim
to detect vulnerabilities based on specific vulnerability patterns

3https://github.com/epicosy/devign
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Table 5: Time cost in seconds of different approaches. N/A: Not Applicable

Method MVD VulDeePecker SySeVR Devign PCA Saber Infer Flawfinder RATS

Training Time(s) 2386.2 1019.5 1833.9 2583.7 N/A N/A N/A N/A N/A
Detection Time(s) 10.4 8.1 9.7 11.9 9.2 11.8 145.8 17.4 20.6

or memory state model. Cherem et al. [21] proposed a solution
named FastCheck, which reduces the memory leak analysis to a
reachability problem over the guarded value-flow graph. Sui et
al. [60, 61] proposed Saber, a full-sparse value-flow graph (SVFG)
based approach, to achieve the def-use chains and value-flow of the
memory for pointer analysis. Shi et al. [56] proposed Pinpoint to
optimize widely-used sparse value-flow analysis through decom-
posing the cost of high-precision points-to analysis. Fan et al. [24]
presented SMOKE, a staged approach for memory leak detection,
to solve the scalability problem at industrial scale. Li et al. [40]
proposed PCA, a static interprocedural data dependency analyzer,
to speed up data dependency computation through partial call-path
analysis. Differently, our approach can learn vulnerability features
from large amounts of vulnerability data without requiring any
prior knowledge of vulnerabilities.

Dynamic Analysis-Based. Dynamic detection methods run
the source code and dynamically track the allocation, use and re-
lease of memory at the run-time. LEAKPOINT [22] monitored the
state of memory objects based on stain analysis and tracked the
last used location of memory and the location where references
were lost. DoubleTake [47] split the program execution into multi-
ple blocks and saved the program state before each block started
running. The program state would be checked after the execution
of the block ended to judge whether there was an error in mem-
ory. Sniper [35] used the processor’s monitoring unit (PMU) to
track the access instructions to heap memory. Then, it calculated
the staleness of heap objects and executed relevant instructions
again to capture memory leakage during program execution. At
the binary level, some dynamic analysis-based tools such as Val-
grind [50], Dr.Memory [15], AddressSanitizer [55] also perform well.
They track memory allocation and deallocation during a program’s
execution, and detect leaks by scanning the program’s heap for
memory blocks that no pointer points to. Unlike dynamic analysis-
based approaches, our approach does not require the execution of
programs.

Learning-Based. With the advance of machine learning (ML)
and especially deep learning (DL) models, some approaches are
proposed to automatically learn explicit or implicit vulnerability fea-
tures from known vulnerabilities to identify unseen vulnerabilities
in projects. Li et al. [45, 46] proposed two slice-based vulnerability
detection approaches, VulDeePecker and SySeVR, to learn syntax
and semantic information of vulnerable code. They represented
source code as sequences at the slice-level and used RNN (e.g., LSTM
and BGRU) to train their detection models. Zou et al. [72] proposed
an attention-based multi-class vulnerability detection approach,
𝜇VulDeePecker, to pinpoint types of vulnerabilities. It introduced
code attention to accommodate information useful for learning local
features and used a building-block BiLSTM to fuse different code
features. Zhou et al. [71] proposed a graph neural network-based

vulnerability detection model through learning on a rich set of
code semantic representations. Cheng et al. [20] embedded both
textual and structured information of code into a comprehensive
code representation and leveraged a GCN to perform the graph
classification. Wang et at. [64] proposed FUNDED, a GNN-based vul-
nerability detection approaches. They combined nine mainstream
graphs to extract finer program semantics and extended GGNN to
model multiple code relationships. Different from existing learning-
based vulnerability detection approaches, our approach aims to
leverage rich flow information to support fine-grained memory-
related vulnerability detection via the novel flow-sensitive graph
neural networks.

8 CONCLUSION
In this paper, we propose MVD to detect memory-related vulnera-
bility statements that are related to sensitive operations. MVD em-
ploys a new graph neural network-based approach that leverages
the flow-sensitive graph neural network (FS-GNN) to jointly embed
both unstructured information and structured information for pre-
serving high-level program semantics to learn implicit vulnerability
patterns. The experimental results show the effectiveness of our ap-
proach by comparing our approach with three state-of-the-art deep
learning-based techniques and five popular static analysis-based
memory detectors.

In the near future, we plan to compare our approach with more
DL-based approaches (e.g., DeepWukong) and static memory detec-
tors on a larger dataset to gain more insights. In addition, we aim
to investigate other code representation techniques to efficiently
model flow information specific to memory-related vulnerabilities.
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